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Abstract. The proliferation of the Internet of Things has been instrumental in the
digitalization of smart cities, where various technologies are leveraged to enable
data utilization. However, achieving interoperability among diverse technologies
remains a challenge due to heterogeneity. In this regard, ontologies have been pro-
posed as a standalone solution that semantically enriches IoT data. Nevertheless,
ontologies are still underutilized due to several limitations as systems become
more complex. In order to overcome these limitations and provide a single point-
of-access for all smart city layers, this paper presents a theoretical IoT framework
that minimizes the requirement of interdisciplinary knowledge to operate IoT plat-
forms, while utilizing existing ontologies in a complementary manner to build a
high-level ontology schema. The framework is comprised of five fundamental
axes/pylons that enable frictionless usage and configuration in order to extract
data from all employed smart city layers via an adapter. This can be beneficial
for smart cities such that legacy or under-utilized IoT platforms can be integrated
with the framework and provide additional information reducing the costs. Exter-
nal operators, applications and platforms can configure the axes in order to extract
data regarding their needs and make better decision making.
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1 Introduction

IoT is becoming the core technology for enabling message broadcasting and inner com-
munication between all smart city ecosystems. Therefore, smart cities (SC) consist of a
plethora of sub-ecosystems (domains) that handle specific needs, however, integrating
diverse technologies in order to achieve interoperability is challenging [1]. Initiatives
that foster interoperability and decrease heterogeneity have been at the forefront of the
research community [2]. Interoperability is a challenging facet across diverse SC ecosys-
tems that utilize different technologies to generate, transform, broadcast and store data
[3].
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The maturity of ontologies enabled the categorisation of objects and and their sur-
rounding environments in hierarchical trees by highlighting specific descriptions and
functionalities. Ontologies have been proposed in frameworks that strive for interop-
erability [4]. From the IoT perspective, however, ontologies have been utilized as a
classification and semantic enrichment tool on data streams [5]. Ontologies such as Sen-
sors, Observation, Sample, and Actuator (SOSA), and Semantic Sensor Network (SSN)
are used for providing additional meta-information regarding IoT sensors [6], however,
Gonzalez-Gil state that although ontologies are beneficial, limitations must be consid-
ered thoroughly [7]. When scaling is required, the complexity of integrating ontologies
significantly increases, due to the lack of automated relationship mechanisms, while the
lack of a single framework that tackles the fragmentation and heterogeneity leads to a
high maintenance cost of IoT systems. Interoperability between different ontologies is
also a requirement even in a single domain as different definitions for the same charac-
teristics may exist. Moreover, semantic heterogeneity could hinder the adoption since
the representation of ontologies can be different while the usage from IoT stakeholders
can lead to semantic ambiguity [8, 9]. Performance is also considered a limitation in
ontology adoption, especially in real-time and resource-constraint devices. In order to
strengthen the operational capacity of SC stakeholders, heterogeneous IoT devices with
diverse specifications and features should have as a basis a common understanding of the
context of their shared data. To this end, the proposed IoT framework addresses hetero-
geneity in the IoT ecosystem by introducing 5 pillars as common scales of measurement
while proposing an ontology that leverages two axes for a double alignment approach.
The framework proposes a junction of two solutions in order to reduce heterogeneity and
improve interoperability. A four-stage ontology integration and a central-hub acting as a
domain-neutral ontology are proposed for utilizing existing domain-specific ontologies
whilst introducing a hierarchical observation for seamless discovery.

Proprietary IoT platforms and/or applications that interface with the IoT devices
have been developed to provide easy access to city officials. However, integrating IoT
platforms from various domains and SC ecosystems in a single point-of-access is chal-
lenging due to the demand of high technical literacy [10]. The proposed IoT framework
presents the fundamental axes that enable operators to interact and retrieve information
across all SC ecosystems. This abstraction from domain-specific IoT platforms reduces
the necessity for city operators to possess direct access and familiarity with each con-
stituent system in each SC sub-ecosystem. In order to facilitate the extraction of relevant
information abstraction can ultimately improve decision-making. Existing platforms
can integrate with the framework via the adapter layer while legacy applications can be
retrofitted. This approach reduces the technical debt from underutilized platforms due to
a lack of specialized personnel. The point of the matter is that the proposed framework
minimized the requirement of interdisciplinary knowledge to operate IoT platforms since
the adaptation of data to the presented framework is handled by domain experts.

The remainder of the paper is structured as follows: The fundamental axes/pylons of
the theoretical IoT framework are presented in Sect. 2. Section 3 highlights the impact
of the framework on SC layers. In Sect. 4, a detailed analysis of the data alignment
from diverse urban datasets and ontologies is presented. Section 5 provides a use case
scenario that leverages the theoretical framework. Finally, Sect. 6 concludes the paper.
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2 Fundamental Axes

It is evident that IoT device integration and deployment in SCs is increasing at a rapid
pace, which imposes several challenges. Smart sensors and actuators that enable real-
time sensing capabilities significantly differ inside a specific SC layer. Therefore, device
interfacing for data extraction demands specialized knowledge and in-depth domain
understanding. For instance, a smart water metering solution integrated into the infras-
tructure layer that measures real-time water consumption demands different interfaces
compared to a smart sensor that monitors traffic congestion on a highway [11–13].
Ontologies can provide the necessary object descriptors for capturing functionality traits
and features.However, ontologies lack scalabilitywhen ahigh-level observationofmulti-
layered data aggregation is required, due to the fact that every ontology has different
descriptors for a single object. Post-correlation and mapping of aggregated data requires
an interdisciplinary approach to develop a high-level ontology schema. Moreover, this
approach hinders scalability when new objects and smart city layers are included.

To this end, a theoretical framework is presented, addressing the scalability concerns
by having five fundamental axes as context descriptors for the IoT devices. This design
facilitates seamless interaction with all SC layers by using each axis as a configurable
option that enables frictionless data aggregation across the smart city ecosystem. The
framework presents the following axes:

1. Temporal
2. Spatial
3. Variation
4. Intensity
5. Edge capabilities

As shown in Fig. 1 the framework’s architecture addresses scalability and data han-
dling activities in the SC layers by proposing a five-axes framework, a meta-ontology
along with an adapter layer. The framework itself is responsible for receiving incoming
requests from external applications and modifying the requests based on the five avail-
able axes. Thereafter, according to the five provided axes, a final query is created that
is passed through a meta-ontology and the adapter layer before accessing each SC layer
separately.

The auditability provided by the framework is considered a key enabler in inter-
facing with the system across multiple smart city layers without requiring background
knowledge of the underlying applications. However, for enhanced applicability and
reliability, the meta-ontology adapter is responsible for interfacing with every layer.
Providing specific axes as interface configurators facilitates the abstract representation
of the interconnected sub-systems of each SC ecosystem.

External applications request data in order to identify useful information patterns.
The adapter is responsible for interfacing with individual systems in every SC layer.
Existing systems developed by domain experts are required to expose connectivity solu-
tions that interface with the adapter. Which expedites the development processes and
removes interdisciplinary overhead. The meta-ontology aggregates information from
multiple ontologies that are included at every SC layer and propagates datastreams to
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Fig. 1. High-level architecture and fundamental axes/pylon of the framework

the framework. Finally, the five axes are able to finetune multiple data streams using the
axis boundaries.

A variety of configurations can be effectively established by the incoming queries.
For instance, the request can be translated into a variety of configurations that adjust
accordingly to every axis as presented in Fig. 1.

Having five axes to configure provides all the necessary means of extracting data
across all involved smart city layers while combining information across multiple axes
can enable further feature extraction and shed light on unknown areas. A theoreti-
cal description of each axis/pylon is presented along with a query example for better
comprehension.

2.1 Temporal

The temporal axis, has a crucial role in the proposed theoretical framework. Time is a
fundamental aspect during the generation and processing of information by IoT devices
as data streams are constantly being generated. Specifically, the ability to capture and
annotate data on the fly is essential for effectively understanding and utilizing them for
further operations.

To facilitate this, datastreams are timestamped by the devices themselves which
enable the comprehension of the fluctuation of data. Data sampling rates are also critical
for estimating specific characteristics. The correlation of the timestamps, the sampling
rates and the measured values with the data streams contributes to identifying patterns,
trends and anomalies that would not be apparent without considering the temporal aspect
of the data.

Furthermore, this axis also enables the development of time-sensitive decision-
making, such that the system is able to react to the changing environment in real-time.



160 E. Syrmos et al.

IoT relies upon timestamped data since it is a vital aspect of the systems to adapt and
respond.

From the operator’s perspective, having the temporal axis as a configurable option
enables data aggregation across all smart city layers that match the given request. For
instance, the request can be “fetch all data across all smart city layers that were created
in the past day having either 1-min or 1-h intervals”.

2.2 Spatial

Similarly, the spatial axis is also considered a fundamental aspect in the IoT domain.
This axis pertains to the physical location of the employed IoT devices and is crucial in
understanding the relationship between the devices and their sensing location.

Operating IoT devices that capture data in the field by sensing changes in the environ-
ment are typically assigned a dedicated geographic locationwhich enables the correlation
between the generated data, the exact location of the device or the wider area of interest.
The significance of the spatial aspect is particularly pronounced in IoT solutions where
device location does not change. In order to achieve locational homogeneity across dif-
ferent data layers, SC can use a geometrical grid as a layout for data recording reference
where grid cells can act as spatial entities. This common spatial reference approach can
ultimately reduce spatial fragmentation.

In these cases, IoT management platforms running on the cloud are responsible
for registering device information including the. Furthermore, these platforms annotate
incoming information based on the broadcasted device ID and their registered location
before data are being stored in the database. On the other hand, devices that change their
location constantly are equipped with specialized hardware (such as GPS antennas) that
track the geographic location and annotate data before transmission.

Operators can request information based on certain criteria e.g., fetch all data across
all smart city layers that are located in a specific area between latitude-A, longitude-A and
latitude-B, longitude-B, this query will return all devices that are within the specified
area, while the framework could aggregate the measurements and compute the mean
value for this area.

2.3 Variation-Fluctuation

Having the ability to configure the aggregated data based on sensor variations is critical
for enabling domain experts to evaluate each aspect. This axis presents the ability to map
data fluctuations across all involved smart city layers. Hence, bridging the information
about the dynamic nature of IoT systems that monitor the environment. For instance,
a deployed temperature sensor monitors the ever-changing value throughout the day.
Values such as temperature, and humidity have low fluctuations while a traffic sensor
that monitors the pedestrian or vehicle flows can be categorized as a high variation
device. Therefore, this axis can be considered complementary since high-fluctuating
devices can leverage the ability of the system to detect critical events or anomalies.
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2.4 Intensity

Intensity is another aspect of configuring the query based on the amount of generated
data across all smart city layers. Specifically, intensity is directly related to the temporal
axis/pylon, however, the frequency of data generation is promoted by employing inten-
sity as an axis/pylon. For instance, operators might request data with a frequency of 5ms
without hard-lined boundaries on time, thus forcing the theoretical framework to request
data that have the ability to transmit and sample data at a such high rate. Similarly, com-
bining intensity with spatial axis can ultimately provide direct insight into generated
data in a given geographic location. The requested location can also be identified as a
high or low-intensity area that is being monitored. Smart cities can benefit from this
axis by identifying the IoT readiness of the smart city. Intensity and IoT-readiness are
intertwined due to the fact that high intensity can be achieved purely on high digital-
ization and IoT adoption. Enforcing digitalization across all districts in smart cities will
indisputably lead to a highly digitalized city that operates with minimal human interven-
tion. Smart cities fed with high frequency and variety of data across all layers facilitate
proactive behaviours, while underdeveloped areas can be strengthened to enable digital
transformation.

2.5 Edge Capability

With the rising adoption of edge computing in the IoT landscape, we opted to include
edge computing in the proposed theoretical framework.

Far-edge is the least compute capable category by all means, due to the fact that con-
strained devices are included. These devices lack computing resources and processing
power required to perform intensive operations. In most cases, these devices are used for
integrating multiple sensors that require external computing units to monitor the envi-
ronment. For instance, LoRaWAN end nodes which are required to operate on batteries
for multiple years are not able to perform on-site computation on the aggregated data.

On the other hand, the near-edge is considered a more capable category for perform-
ing highly optimized algorithms and machine learning techniques. Gateways and hubs
consolidate the edge layer since these devices are required to accommodate multiple
transmitting devices on multiple channels at the same time. Of importance to under-
stand in this regard is that these devices are able to process incoming data by multiple
devices in real-time, and perform data-cleaning, formatting and filtering with intelli-
gent algorithms or even with machine learning models. However, deploying machine
learning models on such devices requires decreasing the overall size of the model while
sacrificing the accuracy in order to be utilized by the device.

The last category is the cloud, which is mostly directed to the platforms and/or appli-
cations that act as data aggregators. These have the ability to perform heavy workloads
and intensive operations on all data without affecting accuracy and performance. Most
of the time these are located on servers with highly capable hardware.

Concluding, this axis/pylon has been introduced mainly for providing operators with
the flexibility to query information about the employed devices accordingly. For instance,
operators can request for all information across all smart city layers that have far-edge
computing capabilities. This will return all device values that meet the specified criteria.
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3 Axes’ Impact on Smart City Layers

The proposed framework presents several key benefits to SCs by improving the over-
all efficiency and effectiveness of process management activities. The five fundamental
axes foster the datastream alignment that decreases the fragmentation and heterogeneity
aspect. Moreover, it enables the use of datastreams based on specific scales of measure-
ment in a homogenized format. Specifically, the framework provides a single point of
access tomultiple platforms that have beendeveloped andunderutilized. This streamlines
the data extraction process which ultimately reduces the friction between data aggre-
gation from different sources across all SC layers. This not only reduces the personnel
requirements but also enables non-specialized operators to access data from multiple
city ecosystems, align them on a single context vertical that supports the decision-
making process. Urban planners can make forecasts and better decisions on resource
management, while real-time event handling can greatly be improved.

Another highly influential aspect of the framework is that data extraction across all
city layers provides urban planners with a holistic view of the city, allowing them to
make informed decisions and implement effective strategies. Moreover, data correla-
tions, patterns and forecasts can be observed across different city ecosystems which by
design is difficult to achieve due to high complexity.

The framework also contains a top-level ontology that is embedded in a central
hub in order to leverage two of the fundamental axes as alignment planes. The use of
a top-level hierarchical domain-neutral ontology can be easily adopted by completely
different cities. Due to the fact that a spatial and temporal alignment acts as the driving
verticals that facilitate the representation of data acrossmultiple data layers on a common
reference entity.

The provided flexibility to configure the data extraction process according to specific
requirements is possible via the given axes. It is crucial to ensure that the framework
is tailored to meet the needs of each city, maximizing its overall effectiveness. Con-
sequently, urban planners can select the data streams and the accuracy levels within
the framework (positioning the data stream within the five axes) to improve the overall
effectiveness.

Another key impact of the framework is that it enables the connectivity, and inte-
gration of individual applications, reducing the overall complexity and fragmentation of
existing platforms. Underutilized applications can also be retrofitted into the framework
which can increase the Return on Investment (ROI) and increase frameworks’ reach on
uncharted areas.

4 Data Alignment Across Urban Datasets and Ontologies

4.1 Pooling of Urban Datasets: Fragmented and Siloed Information

Following the multi-level observation and data collection we described in the previous
sections, a pool of datasets that depict a city or its ecosystems is created. This data pool is
fragmented andheterogeneous.Heterogeneity is due to different sources of data, different
organization principles, scales of measurement, and many other features specific to each
data source used. Consequently, it becomes particularly difficult to get a comprehensive
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view of the available data assets, reconcile them, and get meaning about the realities
of the city these data capture and represent. There are two types of fragmentation and
heterogeneity in a dataset created from the juxtaposition of multiple data sources, layers
of observation, and recording systems.

First, there is a spatial or temporal fragmentation of the data as they are recorded
along different spatial entities or different time periods. For instance, building-related
data can be recorded using the “building” as a spatial entity of reference; land use data can
be recorded using the “building block” as a spatial entity of reference, and infrastructures
can be recorded using the “city grid” as a spatial entity of reference. The dimensions
and location of these spatial entities differ substantially (Fig. 2). However, we need to
achieve locational homogeneity of data by using common spatial entities of reference
across different data layers. We may use the city grid and aggregate buildings, land uses,
activities, and other data at this spatial level. Or we may plot a geometrical grid over
a city and use the grid cells as spatial entities of reference for data recording. No need
to say that locational homogeneity is important if we wish to represent the realities of
a city in a comprehensive way. The same fragmentation applies to temporal data if the
recording of different categories of data took place in different time periods.

Fig. 2. Spatial units at the level of the building (red), building block (green), and city grid (blue)

Second, there is semantic heterogeneity as data capture and represent different
aspects of the urban reality along different taxonomies. Whatever the spatial entity of
reference, data recording concerns data related to (a) the landscape and physical environ-
ment of cities, such as buildings, constructions, infrastructures, and natural ecosystems,
(b) the social characteristics of cities, such as land uses, activities, events, communi-
ties and groups, crime, etc. (c) the digital infrastructure of cities, broadband networks,
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sensors, IoT, websites and social media, and (d) the population, age groups, employ-
ment, income and wealth, and many other characteristics [14]. Each category of data
is described by a taxonomy or ontology, which is a description of data structure with
classes, properties, relationships, and axioms. Taxonomies offer the basis to ensure both
data consistency and understanding of the underlying data model. For instance,

• buildings can be describedwith the Building TopologyOntology, aminimal OWLDL
ontology, having as classes those of building, element, interface, site, space, storey,
and zone [15]

• conditions of the environment can be described with the Web of Things (WoT)
ontology [16], or the Thing Description (TD) Ontology [17]

• land uses can be described with the Land Use Ontology that captures types of land
use and cover over time [18],

• activities can be described with the NACE Rev. 2 standard classification of economic
activities [19],

• risks and city threats can be described by using a risk ontology [20].

Semantic alignment and content correlation are important because they givemeaning
to data. A bus station in the freezing north is not the same as a bus station in the
Mediterranean; a school in a high-crime area is not the same as a school in a zero-
crime village. Present knowledge changes past knowledge, offering new interpretations
of past events. Correlations give newmeaning, which is lost when data is fragmented and
heterogeneous. However, the integration of content in datasets created along different
ontologies is more challenging than their spatial integration.

4.2 Methods to Align Heterogeneous Datasets

Integrating data from heterogeneous sources and making queries is an important topic
in database design, multi-disciplinary engineering, semantic web applications, and else-
where, having as an objective to provide comprehensive access to heterogeneous data
sources. Some methods use ontologies and RDF schemas to represent content from
heterogeneous sources.

Osman, Yahia, and Diallo address the heterogeneity problem through the integration
of existing ontologies to build a new more coherent one [21]. They offer an overview
of the literature with the most relevant works in the field, key definitions of ontology
integration, integration principles, consequences, and techniques. Ontology integration
can be split into repairing, matching, and merging steps, each one preparing the terrain
for the next step. The key process is ontology matching, also referred to as ontology
alignment, which consists in establishing semantic correspondences between the entities
of different ontologies, mainly matching classes and properties of different ontologies.
Ontology alignment is the outcome of this matching process. Following the authors, the
ontology integrationworkflow is developed in four phases: (a) pre-processing, to analyse
input ontologies and improve their quality in order to reduce the matching effort, (b)
matching, which identifies correspondences between the input ontologies and pairs of
equivalent entities across the ontologies under consideration, (c) merging with inputs
from all entities into a new integrated ontology, and (d) post-processing, to assess, repair
and refine the resulting new ontology. Throughout this paper, they provide exhaustive
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matching, alignment, and correspondence types, as well as types of ontology merging
and ontology integration.

A similar review can be found in the paper of Ekaputra et al. on ontology-based
data integration in multi-disciplinary engineering environments [22]. They report on 23
applications fromboth the semanticweb and systemengineering and identify authors and
methods, integration variants, key problems, strengths, and limitations of the different
integration approaches.

Wanget al. present a different approachbasedon amediator-wrapper architecture that
includes four layers: (1) an application layer to communicate with users; (2) a mediating
layer to perform data integration; (3) a wrapper layer which contains wrappers for data
sources; and (4) a source layer giving access to heterogeneous data sources [23]. The core
component in the proposed solutions to solve the heterogeneity problem is a relational
schema based on an entity-relationship diagram (ERD), which interconnects tables of a
relational database over an ontology and RDF associations (Fig. 3).

Fig. 3. Semantic mapping between relational schemas and ontology [21]

An earlier paper by Dou and LePendu, discussed ontology-based integration for
relational databases [24]. For them “a merged ontology is the ontology equivalent of a
global view over local schemas. It consists of common elements from a source ontology
and a target ontology but also defines the semantic mappings between them as bridging
axioms. Amerged ontology allows all the relevant symbols in a domain to interact so that
facts can be translated from one ontology to another using inference over the bridging
axioms”. They argue that defining semantic relationships between concepts is too subtle
for full automation and human interaction is needed. Thus, they define the bridging
axioms manually, based on the understanding of semantic relationships between the
local schemas.

Elmhadhbi, Karray, and Archimède show a different path in which semantic interop-
erability across different systems and information sources can be achieved by aligning
to upper-level ontologies to come up with a shared vocabulary and understanding [25].
They present a use case in which the Basic Formal Ontology (BFO), an upper-level
ontology, and the Common Core Ontology (CCO), a mid-level ontology, are combined
to define a new ontology for firefighters composed of 429 classes and 246 relations. The
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upper-level ontology helped to improve data quality, to reduce development time and
especially facilitate information integration, avoid inconsistencies and achieve both syn-
tactic interoperability to exchange information and semantic interoperability to ensure
that information exchanges make sense under a common understanding.

The above literature briefly presented shows that merging ontologies is a largely
manual and time-consuming process. It contains aspects that are equivalent to building a
new ontology from scratch, using classes, instances, object properties, annotations, data
properties, and axioms of the heterogeneous datasets under consideration. Eventually,
depending on the number of ontology entities to be integrated, building a new ontology
might be less time-consuming and more coherent.

4.3 Integration and Alignment of Fragmented Urban Datasets

The path we propose to integrate heterogeneous datasets for a city organized by a group
of different ontologies combines two approaches:

• The four-stage workflow for ontology integration outlined by Osman, Yahia, and
Diallo enables to set of semantic correspondences and matching between entities of
different ontologies [19],

• The use of a top-level ontology as a central hub to align spatial and temporal classes
based on the presented axes and create new relationships from the initial ontologies
[26].

The process is depicted in Fig. 4 in which a group of heterogeneous datasets and
their underlying ontologies (DS-O1, DS-O2, DS-O3, DS-O4) evolves into a hub and
spokes architecture to create a suite of interoperable ontologies. The process includes
the setting of a top-level ontology at the central hub and the alignment/transformation
of initial datasets (DS-O1TR, DS-O2 TR, DS-O3 TR, DS-O4 TR).

Fig. 4. Integration and alignment of heterogeneous datasets and ontologies

Three objectives guide this double alignment process: (a) the need to create a new
hierarchy over all data classes included in the initial datasets, (b) the need to align the
spatial and temporal classes across different ontologies, and (c) the need to introduce new
properties connecting instances across the ontologies used, thus creating new meaning
at the intersection of initial ontologies.
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The Central Hub. A domain-neutral ontology is developed in the central hub to
connect with domain-specific ontologies and support retrieval and discovery through-
out the datasets. ISO/IEC 21838–1:2021 specifies the requirements for a top-level hub
ontology, defining the relations between top-level ontology and domain ontologies and
the role of a top-level ontology in definitions and axioms of domain-specific ontologies
[27]. As a top-level ontology at the central hub, we propose the BFO-ISO, an ontol-
ogy evolved from the Basic Formal Ontology (BFO) and defined as top-level ontology
by ISO 21838–2 [28]. BFO is widely used to facilitate interoperability across multi-
ple engineering-related ontologies; is a realist formal ontology representing high-level
universal types of things; does not contain any domain-specific knowledge [29, 30].
We have used BFO to develop the SC ontology and provide a better understanding and
description of the smart/intelligent city landscape, identify main components and pro-
cesses, and clarify core entities related to the integration of physical, social, and digital
dimensions of a city [31].

The class hierarchy of BFO-ISO: ISO 21838–2 includes a limited number of entities.
It starts with the dichotomy between continuants (material or immaterial entities that
continue to exist through time while maintaining their identity) and occurrents (pro-
cedures that unfold over a time period); adopts the dichotomy between independent
and dependent entities (depending on the existence of other entities, such as quality,
role, function); defines as specifically dependent continuants those that cannot migrate
from one bearer to another; classifies immaterial entities in sites, fiat boundary continu-
ants, and spatial regions, which are particularly important distinctions in geography and
city planning; classifies occurrent entities in processes, temporal regions, spatiotempo-
ral regions; and uses, as all ontologies, the distinction between instances (individuals,
particulars) and universals (generals, types) (Fig. 5) [32].

The top-level ontology at the central hub created with BFO-ISO should contain all
classes allowing the alignment of initial ontologies. The spatial regions and temporal
regions should be defined inways to allowmatchingwith the spatial and temporal classes
of initial ontologies, enabling spatial and temporal synchronization of data. New object
and data properties should be defined at the level of the central hub across the initial
ontologies.

Fig. 5. The BFO-ISO ontology [33]
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Transformations of Initial Datasets. Three types of transformations are needed to
make city datasets semantically interoperable, semantic alignment, spatial alignment,
and temporal alignment.

Semantic alignment is required if the same thing is denoted by different terms in
different datasets, e.g., "innovation area" and "innovation zone" or “industrial district”
and “industrial area”, or “yard” and “outdoor area”. In owl, “owl:equivalentClass” pro-
vides class equivalence, allowing a class description to have the same class extension as
another class description, meaning that two classes are alternate names, are equivalent
definitions of the same thing, or have the same set of instances.

Spatial alignment is required if data is recorded at different spatial entities, as shown
in Fig. 2, at the building, building block, and city grid levels. If so, there is a need to intro-
duce new spatial classes (fiat boundary or spatial region) that are common across datasets.
Cities are full of physical boundaries and fiat boundaries that define land properties,
administrative regions, postal districts, urban communities, and other human-induced
demarcations. Data records follow these demarcations and to achieve data interoperabil-
ity, there is a need to transform the initial datasets to new spatial categories common
across datasets.

Temporal alignment is also required if data is recorded in different time periods.
Introduction of common temporal entities with properties such as “hasBeginning” and
“hasEnd”, and therefore common temporal intervals across datasets is a way to align
datasets (see also, Time Ontology in OWL) [34]. There is also a need to transform the
initial datasets to match the common temporal entities across datasets.

5 Use Case

An indicative use case scenario to highlight the potential use of the proposed framework
in a SC which adopts all five axes is presented below;

Harbor authorities, recently included their legacy system, controlling the installed
sensors network in the wider harbor area, into the proposed framework adapter. A cruise
ship approaches the coastal city and the captain asks for available live sensors data (tem-
poral axis) from the area around the port (spatial axis). Among various sensors streamed
to the ship, the captain focuses on data coming from sensors measuring water height
every 20 min (intensity axis). The selected interval is sufficient as the tide is relatively
mild in this port. The extra information helped the captain to decide the most appropriate
quay leading to faster debarkation. The harbor authorities have already agreed to grad-
ually install a new set of similar sensors capable to stream water height on one-second
interval, providing near-to real-time measurements allowing bigger ships to approach
more safely. Although the streamlined data structure of the newly employed sensors
is different, the framework is able to ingest and serve data in a unified way via the
meta-ontology and enclosed adapter layer in the single point of access.

The passengers, during their trip, were wearing wristbands allowing them to unlock
their cabins, purchasing goods, and benefiting cruise ship to optimize resources based on
their movements (e.g., identifying understaffed areas on the deck). The wristbands are
broadcasting a unique identifier but some elderly passengers also consent to wear more
advanced ones that also monitor their medical condition (i.e., heart rate, oxygen satu-
ration in the blood) and broadcast in real-time. These wristbands are compatible to the



An IoT Framework for Heterogeneous Multi-layered Access in Smart Cities 169

proposed framework and they are broadcasting anonymous data in hotspots around the
city. In case of an unusual peak of heart pulse (variation-fluctuation axis) in one passen-
ger’s wristband, while navigating through the city, has triggered an alarm. Local health
centers are constantly fetching anonymized health-related information about citizens via
the framework adapter in a given area.

At a higher level, the local authorities are able to collect big data from the sensors
around the city in a dedicated cloud-based application (edge capabilities axis) andprocess
historical data, including cruise ship visits. Combining different sensor data (weather,
traffic, pollution, electricity consumption, etc.)with static information such as rent prices,
yearly events (e.g., conferences) they can get useful insights and decide on future policies
that could benefit the city and its citizens.

The presented use case has demonstrated the applicability of the proposed frame-
work by introducing interactions with each frameworks’ axis. It is important to note that
interoperability is achieved by the adapter layer in conjunction with the meta-ontology,
the scenario that highlights this possibility is the integration of new water sensors more
capable to measure in high frequency with legacy water sensors. Furthermore, the wrist-
band scenario showcases the exploitation of combining multiple framework axis to drive
operational efficiency and instantaneous response in case of emergency. Lastly, the local
authority’s scenario presents an envisaged monitoring setup that aggregates data across
a variety of sensors with different edge computing capabilities across multiple smart city
ecosystems.

6 Conclusion

In this article, we have introduced an IoT framework that has the capability of offering a
comprehensive arrangement for interfacing with smart city IoT platforms and/or appli-
cations. The framework is structured around five distinct axes, each of which is focused
on specific functionalities. Furthermore, the combination of these axes with different
configurations has the potential to significantly enhance the information retrieval pro-
cess. A top-level neutral ontology is introduced as an integration mechanism of domain-
specific ontologies to reduce heterogeneity and establish a multi-axes alignment. Given
the usability of each axis, a use case has been presented that highlights the utilizations
and applicability in real-world scenarios. Finally, the adoption of the proposed frame-
work by contemporary smart cities can support the transition to the meta-information
era where big data demands efficient data management across a variety of data sources.
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