

Project Acronym: STORM CLOUDS

Grant Agreement number: 621089

Project Title: STORM CLOUDS – Surfing Towards the Opportunity of Real Migration to CLOUD-based public
Services

Legal Notice and Disclaimer

This work was partially funded by the European Commission within the 7th Framework Program in the context of the

CIP project STORM CLOUDS (Grant Agreement No. 621089). The views and conclusions contained here are those of

the authors and should not be interpreted as necessarily representing the official policies or endorsements, either

expressed or implied, of the STORM CLOUDS project or the European Commission. The European Commission is not

liable for any use that may be made of the information contained therein.

The Members of the STORMS CLOUDS Consortium make no warranty of any kind with regard to this document,

including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The

Members of the STORMS CLOUDS Consortium shall not be held liable for errors contained herein or direct, indirect,

special, incidental or consequential damages in connection with the furnishing, performance, or use of this material.

© STORMS CLOUDS Consortium 2014

Deliverable D2.2.2

Storm Clouds Platform Architectural Design

Work Package: WP2

Version: 1.0

Date: 04/02/2015

Status: Project Coordinator Accepted

Dissemination Level: PUBLIC

Version 1.0 D2.2.2 – Storm Clouds Platform Architectural Design

Page 2 of 52 © Storm Clouds 2015

Authoring
Role Name Organisation

Edited by Marco Consonni Hewlett Packard Italiana

Author Claudio Caimi Hewlett Packard Italiana

Author Marco Consonni Hewlett Packard Italiana

Author Andrea Milani Hewlett Packard Italiana

Reviewed by Agustín González Quel Ariadna Servicios Informáticos

Reviewed by Panagiotis Tsarchopoulos Aristotelio Panepistimio Thessalonikis

Version Control
Modified by Date Version Comments

M. Consonni 15/12/2014 0.1 First Draft

M. Consonni, A. Milani 04/02/2014 0.2 Ready for review

Panagiotis Tsarchopoulos 10/02/2014 0.3 Reviewed

M. Consonni 10/02/2014 0.4 Summary and Conclusions

M. Consonni 10/02/2014 1.0 Ready for EUC review

D2.2.2 – Storm Clouds Platform Architectural Design Version 1.0

© Storm Clouds 2015 Page 3 of 52

Project Presentation
Surfing Towards the Opportunity of Real Migration to Cloud-based public Services (STORM CLOUDS) [1] is a
project partially funded by the European Commission within the 7th Framework Program in the context of the
Capital Improvement Plan (CIP) project (Grant Agreement No. 621089) [2].

The project has the objective of exploring the shift to a cloud-based paradigm for deploying services that
Public Authorities (PAs) currently provide using more traditional Information Technology (IT) deployment
models. In this context, the term "services" refers to applications, usually made available through Internet, that
citizens and/or public servants use for accomplishing some valuable task.

The project aims to define useful guidelines on how to implement the process of moving application to cloud
computing and is based on direct experimentation with pilot projects conducted in, at least, the cities
participating to the consortium.

STORM CLOUDS will also deliver a consolidated a portfolio of cloud-based services validated by citizens
and Public Authorities in different cities and, at the same time, general and interoperable enough to be
transferred and deployed in other European cities not taking part in the project. This portfolio will be mainly
created from applications and technologies delivered by other CIP Policy Support Program (CIP-PSP) and
Framework Program 7 (FP7) projects, as well as resulting from innovation efforts from Small and Medium
Enterprises (SMEs).

The project is composed by the following consortium:

Member Role/Responsibilities Short Name Country

Ariadna Servicios Informáticos, S.L. Co-ordinator ASI Spain

Hewlett Packard Italiana S.r.l. Participant HP Italy

EUROPEAN DYNAMICS Advanced Systems of
Telecommunications, Informatics and Telematics

Participant ED Greece

Research, Technology Development and Innovation,
S.L

Participant RTDI Spain

Aristotelio Panepistimio Thessaloniki Participant AUTH Greece

Alfamicro Sistemas de Computadores LDA Participant Alfamicro Portugal

Manchester City Council Participant Manchester United
Kingdom

Ayuntamiento de Valladolid Participant Valladolid Spain

City of Thessaloniki Participant Thessaloniki Greece

Câmara Municipal de Águeda Participant Águeda Portugal

For more information on the scope and objectives of the project, please refer to the Description of Work
(DOW) of the project [3].

Version 1.0 D2.2.2 – Storm Clouds Platform Architectural Design

Page 4 of 52 © Storm Clouds 2015

Executive Summary
Work Package 2 (WP2) of the Storm Clouds project aims to design the reference architecture for the Storm
Clouds Platform (SCP) and to implement the cloud platform infrastructure for hosting application services
selected for cloudification. SCP supplies computational resources that are allocated/de-allocated on-demand
following an “as-a-Service” cloud computing paradigm.

This document describes the SCP architecture providing the technical details for the implementation; it shows
the main modules, what functions they implement, how they interact and what are the software products
selected for the actual realization.

The architecture described here is used for realizing an actual implementation of the platform, made
available to the STORM CLOUDS consortium for deploying their applications during the project lifetime.
However, SCP architecture is a reference for implementing similar services on other contexts. Some project
participants (e.g. municipalities) might require that applications run in a different, maybe “more controlled”,
environment implemented in data centres on their premises. This is preferred and/or strictly required for
security and privacy regulations, applicable to the information managed by the applications. In such a case,
SCP design can be totally or partially reused for the implementation of a private SCP instance.

The description of the architecture focuses on the software components used for the implementation; the
hardware equipment are intentionally not fully described assuming that the solution can be supported by
commodity hardware. In addition, a selection of the hardware necessary for supporting a SCP instance would
require an in-depth analysis of the operational, security, financial and performance requirements that are out
of scope.

According to project objectives defined in the project Statement of Work document [3], “the project partners
declare strong commitment to an open approach, and this will be heavily considered when selecting concrete
services to deploy during the project and include in STORM CLOUDS portfolio”. In this perspective, SCP
architecture is based on software solutions and components that are distributed under an open software
license.

SCP architecture is meant to address the requirements and specification described in a previous STORM
CLOUDS project deliverable titled “D 2.1 Storm Clouds Platform – Requirements and Specification”[4].

This document is organized in the major sections described below.

Section 1, Overall Architecture, describes the SCP architecture showing a first-cut decomposition in layers
detailed in the subsequent sections.

Sections 2 to 5 provide details on the layers composing the architecture. Section 2, Infrastructure as a
Service Layer, describes the software technologies used to implement basic computational resources like
virtual machines, virtual disks, virtual networks, etc. Section 3 details the software solution for implementing an
operating environment for web-based applications (Platform as a Service Layer). Section 4, Database Layer,
describes the database services and Section 5, Management Layer, describes the implementation of
monitoring functions. For each layer, the architecture describes what the main functions and objectives are
what software products implement the functions, and the deployment on the infrastructure.

Section 6 draws the conclusions.

D2.2.2 – Storm Clouds Platform Architectural Design Version 1.0

© Storm Clouds 2015 Page 5 of 52

Table of Contents
Authoring.. 2
Version Control ... 2
Project Presentation ... 3
Executive Summary .. 4
Table of Contents ... 5
List of Figures .. 6
List of Tables ... 7
Abbreviations .. 8
1 Overall Architecture .. 10
2 Infrastructure as a Service Layer .. 11

2.1 Concept ... 11
2.2 Logical View ... 12

2.2.1 IaaS Platform ... 13
2.2.2 Virtualization Layer .. 17

2.2.2.1 Server Virtualization .. 17
2.2.2.2 Storage Virtualization ... 18
2.2.2.3 Network Virtualization ... 19

2.3 Deployment View .. 19
2.3.1.1 Deployment Models ... 20
2.3.1.2 Availability Zones ... 22

2.4 Data Back-Up Using the IaaS Platform Services .. 23
3 Platform as a Service Layer .. 25

3.1 Concept ... 25
3.2 Logical View ... 26
3.3 Deployment View .. 28

3.3.1 BOSH ... 28
3.3.2 Small Scale Deployment .. 29
3.3.3 Large Scale Deployment ... 30

4 Database Layer ... 33
4.1 Concept ... 33
4.2 Logical View ... 34
4.3 Deployment View .. 34

4.3.1 Active-Passive Cluster... 35
4.3.2 MySQL Cluster with Galera .. 35

5 Management Layer ... 38
5.1 Concept ... 38
5.2 Logical View ... 40
5.3 Deployment View .. 42

6 Summary and Conclusions .. 44
Appendix A – Active-Passive Cluster on Linux Platform .. 46
References ... 49

Version 1.0 D2.2.2 – Storm Clouds Platform Architectural Design

Page 6 of 52 © Storm Clouds 2015

List of Figures
Figure 1-1 - Storm Clouds Platform - Overall Architecture .. 10
Figure 2-1 - Infrastructure as a Service - Conceptual View ... 11
Figure 2-2 - Infrastructure as a Service - Logical View ... 12
Figure 2-3 - OpenStack Logical Architecture ... 13
Figure 2-4 - Block Storage Virtualization ... 18
Figure 2-5 - OpenStack Basic Deployment .. 20
Figure 2-6 - Medium Complexity Deployment .. 21
Figure 2-7- OpenStack Deployment - Availability Zones ... 22
Figure 2-8 - Duplicity Deployment ... 23
Figure 3-1 – Platform as a Service – Conceptual View .. 25
Figure 3-2– Cloud Foundry Logical Architecture ... 26
Figure 3-3 – Simple deployment managed by MicroBOSH ... 28
Figure 3-4 – Platform as a Service – Small scale deployment .. 30
Figure 3-5 – Platform as a Service – Large scale deployment ... 31
Figure 4-1 - Application Database - Simplistic Scenario .. 33
Figure 4-2 – Application Database – Complex Scenario ... 33
Figure 4-3 - Database Instance Usage Models ... 34
Figure 4-4 - MySQL Active-Passive Cluster .. 35
Figure 4-5 – MySQL cluster ... 37
Figure 5-1 - Monitoring Data Representation - Map Example .. 39
Figure 5-2 - - Monitoring Data Representation - Dynamic Parameter Example .. 40
Figure 5-3 - Zabbix Logical Architecture .. 41
Figure 5-4 - Zabbix Deployment Architecture ... 42
Figure 0-1- Active-Passive/Shared-Nothing High Availabilty Cluster .. 46
Figure 0-2 - Load Balancing with HAProxy.. 48

D2.2.2 – Storm Clouds Platform Architectural Design Version 1.0

© Storm Clouds 2015 Page 7 of 52

List of Tables
Table 2-1- OpenStack Modules and Sub-Modules .. 16
Table 2-2- KVM Selection Criteria .. 17
Table 2-3 - Block Storage Technologies Selection Criteria .. 19
Table 2-4 - Networking Technologies Selection Criteria ... 19
Table 5-1 - Zabbix Modules ... 41

Version 1.0 D2.2.2 – Storm Clouds Platform Architectural Design

Page 8 of 52 © Storm Clouds 2015

Abbreviations
Acronym Description

API Application Programming Interface

CLI Command Line Interface

DB Database

DBMS DataBase Management System

DEA Droplet Execution Agents

DNS Domain Name System

DRDB Distributed Replicated Block Device

DHCP Dynamic Host Configuration Protocol

ERP Enterprise Resource Planning

GIS Geographic Information System

GRE Generic Routing Encapsulation

GTFS General Transit Feed Specification

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IP Internet Protocol

iSCSI internet SCSI

JMX Java Management Extensions

KML Keyhole Mark-up Language

KVM Kernel-based Virtual Machine

IaaS Infrastructure as a Service

IPMI Intelligent Platform Management Interface

IT Information Technology

L2 Layer 2 (networking)

L3 Layer 3 (networking)

LXC LinuX Containers

NAT Network Address Translation

NFS Network File System

NIST National Institute of Standards and Technology

N/A Not Available

PC Personal Computer

PaaS Platform as a Service

PGP Pretty-Good-Privacy

QEMU Quick EMUlator

RAID Redundant Array of Independent Disks

REST REpresentational State Transfer

RSS Really Simple Syndication

D2.2.2 – Storm Clouds Platform Architectural Design Version 1.0

© Storm Clouds 2015 Page 9 of 52

Acronym Description

SCP Storm Clouds Platform

SaaS Software as a Service

SCSI Small Computer System Interface

SNMP Simple Network Management Protocol

SSH Secure Shell

SSL Secure Socket Layer

TBC To Be Confirmed

TBD To Be Defined

TCP-IP Transmission Control Protocol – Internet Protocol (suite)

URL Uniform Resource Locator

VIP Virtual IP Address

VM Virtual Machine

VPN Virtual Private Network

WLAN Wireless Local Area Network

Version 1.0 D2.2.2 – Storm Clouds Platform Architectural Design

Page 10 of 52 © Storm Clouds 2015

1 Overall Architecture
The following diagram shows the logical view of the Storm Clouds Platform (SCP) architecture:

Figure 1-1 - Storm Clouds Platform - Overall Architecture

The Hardware Layer represents the physical equipment where the platform is hosted. It is composed of
servers, network connections and equipment, storage devices, etc. This layer is implemented by the hardware
of the data centre(s) where the platform is hosted.

Servers are equipped with any Linux distribution supporting OpenStack like Debian 7.0, openSUSE, SUSE
Linux Enterprise Server, Red Hat Enterprise Linux, CentOS, Fedora and Ubuntu 12.04/14.04 (LTS).

OpenStack® [5] implements the Infrastructure as a Service Layer that provides services for creating and
managing virtual computing resources in the cloud; for such purpose it uses some virtualization technologies
that will be described below in this document.

Cloud FoundryTM [6] implements the Platform as a Service Layer. It is worth noting that in SCP architecture the
PaaS Layer is built on top of the IaaS Layer. This means that the servers of the PaaS are actually
implemented as VMs running in the IaaS cloud. This implies several benefits in terms of flexibility as will be
explained subsequently.

The Database Layer provides the applications running in the cloud with installations of database engines;
developers can use them for implementing and/or deploying their applications without taking care of the
maintenance that is under the cloud provider responsibility. The Database Layer supports MySQLTM [7] and
PostgreSQL [8] database engines in order to support the applications selected for cloudification [4].

The Management Layer implements functions for managing and maintaining the services hosted in the cloud
platform. They can be used both by the cloud platform provider and the cloud users. Zabbix [9] implements
monitoring functions; Duplicity [10] implements data backup functions.

Application Services collectively represents the applications hosted in the SCP. They are not part of the SCP
architecture but use the services the architecture provides for running

It is worth noting that the proposed architecture covers several layers, with increasing levels of abstraction,
because, in addition to defining the SCP platform, it aims to provide a reference framework that stakeholders
may use beyond the STORM project to implement their own cloud platform. For example, organizations that
require full control over the infrastructure may implement only the IaaS layer and not use any PaaS
technology, while others may hide the IaaS layer completely and expose only the PaaS platform to their
developers, in order to standardize deployments and abstract away infrastructure complexity. Others may
adopt a hybrid approach and deploy standard applications on the PaaS and application with special
requirements on the IaaS. In addition to this, all technologies included in the architecture are open source,
which means they can be implemented both on-premises or on public cloud providers, depending on
requirements such as security, data protection and cost trade-offs.

The following sections describe the architecture layers in details.

D2.2.2 – Storm Clouds Platform Architectural Design Version 1.0

© Storm Clouds 2015 Page 11 of 52

2 Infrastructure as a Service Layer

2.1 Concept

The Infrastructure as a Service (IaaS) layer provides basic IT capabilities briefly described as follows:

- computation services: the ability to start Virtual Machines (VMs) running an operating system and,
optionally, application software;

- storage services: ability to create storage elements (virtual disks or files);

- networking services: ability to create network elements like Layer 2 (L2) networks, subnets, DHCP
services, etc.

When applications are deployed in a cloud environment, the IaaS layer provides the run-time environment for
the execution. The following, figure summarizes the concept:

Figure 2-1 - Infrastructure as a Service - Conceptual View

At the bottom of the stack, physical resources like physical machines, physical disks, and physical networks
provide the actual environment for supporting the computational workload.

The IaaS platform is a software layer providing services for creating virtual resources (virtual machines, virtual
disks and virtual networks) used instead of their physical counterparts in order to deploy and run applications.
Virtual resources are provided as services; this means that they are created when needed, used to run
applications, and removed when the application is not anymore needed. The actual computation happens at
the physical level but physical resources and applications are not tightly bound together. This makes it easier
to reuse the physical infrastructure for several purposes, usually at different times.

The IaaS platform provides resources using virtualization, a set of technologies aimed to simulate the existence
of a piece of hardware that is “materialized” by a software layer running on top of the physical devices. The
idea is that the actual hardware is hidden to the applications and partially or temporarily used for
“impersonating” the role of a virtual piece of similar hardware.

The target users of the IaaS Layer are both the cloud provider and the application developers. The cloud
provider uses IaaS Layer services for implementing higher layer services: s/he uses virtual machines for
running the PaaS Layer software solution or the database engines in the Database Layer.

Version 1.0 D2.2.2 – Storm Clouds Platform Architectural Design

Page 12 of 52 © Storm Clouds 2015

The application developers, on the other hand, can use the IaaS Platform service in those cases where the
applications (or part of them) are not hosted in the PaaS Layer.

2.2 Logical View

The following picture shows the logical architecture of the Infrastructure as a Service Layer:

Figure 2-2 - Infrastructure as a Service - Logical View

The Hardware Layer represents the physical servers used for deploying the IaaS Layer. They are equipped
with a Linux operating system1, hosting both the Virtualization Layer and the IaaS Platform software
packages.

When a user wants to manage and/or control virtual computational resources, s/he interacts with the IaaS
Platform requiring a service via an API call (red flow in the picture). The IaaS Platform translates the high-
level API call into lower level instructions for the Virtualization Layer in order to orchestrate all the actions
required for providing the service (grey flow). When the service request is fulfilled, the user can directly
interact with the Virtualization Layer for using the virtual resource (yellow flow).

For instance, when a user wants to create a virtual machine, s/he submits a “virtual machine creation request” to
the IaaS platform through a suitable API call. The IaaS Platform decides where (i.e. on what server) the virtual
machine can be started and interoperates with the Virtualization Layer for creating all the virtual resources
for fulfilling the request. It contacts the Storage Virtualization software for retrieving the image of the virtual
machine to boot, the Server Virtualization software (i.e. the Hypervisor) for activating a new virtual machine,
the Network Virtualization software for connecting the virtual machine to the network, etc. Finally, when the
virtual machine runs, the user directly operates on it the same way s/he does with a physical machine.

The Infrastructure as a Service Layer is the combination of the Operating System, the Virtualization Layer and
the IaaS Platform.

1 It can be any Linux distribution supporting both OpenStack and the virtualization technologies mentioned in this
document. At the time of writing, the supported platforms are: Debian 7.0, openSUSE and SUSE Linux Enterprise Server,
Red Hat Enterprise Linux, CentOS, Fedora and Ubuntu 12.04/14.04 LTS. For more information, see
http://docs.openstack.org/

http://docs.openstack.org/

D2.2.2 – Storm Clouds Platform Architectural Design Version 1.0

© Storm Clouds 2015 Page 13 of 52

2.2.1 IaaS Platform

OpenStack is the IaaS Platform selected for the implementation of the SCP.

In addition to being an IaaS platform, OpenStack is also a project and a community backed by an
independent foundation supported by several corporate sponsors like Hewlett Packard, IBM, Cisco, Ericsson,
Intel, AT&T, Redhat, RackSpace, etc. All source code is freely available under Apache 2.0 license [5].

OpenStack provides a documented and open Application Procedure Interface (API). This is a very important
aspect in general - and for the project in particular - in order to fulfil the requirements stating that the whole
solution shall be implemented with open software products.

The following picture shows the OpenStack high-level logical architecture:

Figure 2-3 - OpenStack Logical Architecture

OpenStack is composed of the following modules mapping the fundamental IaaS services:

 Nova provides computation services (Virtual Machines);

 Neutron provides networking services (Virtual Networks);

 Cinder provides block storage services (Virtual Disks);

 Swift implements object storage services (Files);

 Horizon provides a web front-end for managing and controlling the resources allocated in the cloud;

 Glance implements a catalogue for storing virtual machine images;

 Keystone implements authentication and authorization functions;

 Heat uses the other components for orchestrating the creation/deletion of virtual resource
aggregations described by script files called “stacks”;

 Ceilometer monitors the usage of resources for metering and accounting purposes.

Generally speaking, OpenStack implements storage services for storing data in the cloud but they can be
further classified as follows:

 block storage services: ability to manage virtual disks to connect to VMs running in the cloud (these
services are implemented by Cinder);

Version 1.0 D2.2.2 – Storm Clouds Platform Architectural Design

Page 14 of 52 © Storm Clouds 2015

 object storage services: ability to manage files (i.e. objects) to be stored in the cloud (these services
are implemented by Swift).

It is worth noticing that while block storage services are mainly focussed on providing storage resources for
the VMs running in the same cloud where the storage is hosted, object storage services implement the ability
to store data coming either from VMs in the cloud or by any other application/device running outside the
cloud.

More in details block storage services create and manipulate virtual disks used by the VMs running in the
cloud: the cloud user can create virtual disks and attach/detach them to VMs for storing data. Object storage
services, on the other hand, provide the cloud users with the ability of uploading/downloading files in the
cloud. The files can even come from a client application running on a physical device outside the cloud, for
example a mobile phone in the hand of the user. In this case, the application running outside the cloud directly
interoperates with the object storage services calling a suitable API.

OpenStack modules communicate with each other using a message broker middleware (e.g. RabbitMQ) and
store status information in a centralized database (e.g. MySQL); for the sake of brevity, these elements are
not shown in the logical architecture.

OpenStack’s modules are broken down into sub-modules, implemented as Python programs, installed as Linux
services (i.e. daemons) on the physical servers of the data centre.

The following table describes the modules and the related sub-modules:

Module Sub-Module Type Description

Keystone keystone-all API/Mediator Implements API end-point and the logic for
authenticating cloud users

keystone CLI (U) Submits commands for managing users,
tenants, roles, etc.

keystone-manage CLI (A) Submits administrative commands for
managing the keystone module

Glance glance-api API Accepts API calls for image management

glance-registry Mediator Manages image metadata (e.g. size,
type)

glance CLI (U) Submits commands for managing virtual
machines images

glance-manage CLI (A) Submits administrative commands for
managing the glance module

Nova nova-api API Implements API for managing
computational resources (i.e. VMs)

nova-scheduler Mediator Determines on which node a virtual
machine should run

nova-conductor Mediator Mediates interactions between nova-
compute and the cloud database

nova-cert Mediator Manages x509 certificates (only needed
for EC2 API)

nova-consoleauth Mediator Authorizes tokens that console proxies
provide. See nova-novncproxy

nova-novncproxy Mediator Proxy for accessing running instances
through a VNC connection

nova-compute Agent Manages VM instances through hypervisor
API

nova CLI (U) Submits commands for managing
computational resources (VMs)

nova-manage CLI (A) Submits administrative commands for
managing the nova module

Cinder cinder-api API Implements API for managing block
storage resources (i.e. virtual disks)

cinder-scheduler Mediator Determines on which node a virtual disk
should reside

cinder-volume Agent Manages virtual disks through the API
provided by the block-storage

D2.2.2 – Storm Clouds Platform Architectural Design Version 1.0

© Storm Clouds 2015 Page 15 of 52

Module Sub-Module Type Description

virtualization provider

cinder CLI (U) Submits commands for managing virtual
disks

cinder-manage CLI (A) Submits administration commands for
managing the cinder module

Neutron neutron-server API/Mediator Accepts API calls for virtual network
resources management

neutron-dhcp-agent Agent Distributes IP addresses to VMs in
collaboration with dnsmasq [11], an
external DHCP server

neutron-metadata-agent Agent Provides VMs with a HTTP end-point for
retrieving metadata

neutron-l3-agent Agent Implements L3/NAT forwarding to provide
external network access for VMs running in
the cloud (see also [12])

neutron-plugin-
openvswitch-agent

Agent Performs configurations for creating virtual
L2 trunks and for connecting VMs to them

neutron CLI (U) Submits commands for managing virtual
network objects like L2 trunks, ports,
subnets, virtual routers, etc.

neutron-manage CLI (A) Submits administrative commands for
managing the neutron module

Horizon openstack-dashboard GUI It’s a django [13] Python application
running as an Apache [14] HTTP server
application. It implements a web-based
user interface for submitting IaaS requests

Swift swift-proxy-server API/Mediator Implements API for managing object
storage resources, like files and containers,
and the related metadata

swift-object
swift-object-replicator
swift-object-updater
swift-object-auditor

Agent/Mediator Manage actual objects (files) on the
storage nodes.

swift-container
swift-container-replicator
swift-container-updater
swift-container-auditor

Agent/Mediator Manage a mapping of containers, or
folders, within the Object Storage service.

swift-account
swift-account-replicator
swift-account-reaper
swift-account-auditor

Agent/Mediator Manages accounts defined with the Object
Storage service.

swift CLI (U) Submits commands for managing object
storage resources and related metadata

Heat heat-api API Accepts API calls for orchestration services

heat-engine Mediator Create virtual resources described into
templates by orchestrating API calls

heat CLI (U) Submits commands for creating virtual
resource “stacks”

heat-manage CLI (A) Submits administrative commands for
managing the heat module

Ceilometer ceilometer-api API Accepts API calls for telemetry services

ceilometer-agent-central Mediator Polls for resource utilization statistics and
for resources not tied to instances or
compute nodes

ceilometer-alarm-notifier Mediator Allows setting alarms based on threshold
evaluation for a collection of samples

ceilometer-collector Mediator Monitors the message queues (for
notifications and for metering data coming

Version 1.0 D2.2.2 – Storm Clouds Platform Architectural Design

Page 16 of 52 © Storm Clouds 2015

Module Sub-Module Type Description

from the agent) and turns them into
metering messages

ceilometer-agent-compute Agent Polls for resource utilization statistics on
the hosting compute node

ceilometer CLI (U) Submits commands for using telemetry
services

Table 2-1- OpenStack Modules and Sub-Modules

The table classifies the sub-modules in types:

 API - Application Program Interface front-end provides an API end-point that cloud user can call for
submitting IaaS requests. API modules are installed as Linux daemons and implement a RESTful [15]
interface.

 Mediator – Mediators are daemons coordinating and orchestrating the actions for fulfilling API
requests.

 CLI (U): Command Line Interpreters for cloud Users are programs, usually running on users‘ client
machine, for submitting API requests. They are implemented as Python programs callable from the
shell of the cloud user‘s machine. CLI (U) programs submit API requests to API daemons.

 CLI (A): Command Line Intepreters for cloud Administrators are programs, exclusevely running on
servers implementing the cloud (cloud nodes), that allow the cloud administrator to perform
administrative tasks like showing logged error messages, migrating/synchronizing the cloud
database, etc.

 GUI: Graphical User Interface provides a point-and-click interface for using infrastructure services
(e.g. starting/stopping VMs, creating/attaching/deleting virtual disks, etc.).

 Agent: This type of sub-module, implemented as a daemon, is responsible for directly interacting with
the virtualization layer and managing the virtualized resources (e.g. VMs). For this reason, agent sub-
modules are directly deployed on the nodes that provide the virtual resources and interoperate with
the virtualization layer. For instance, nova-compute (the nova module agent), is deployed on the
nodes dedicated to run virtual machines and interoperate with the hypervisor installed on such nodes.

The classification above helps the design of the OpenStack deployment; in fact, although in principle every
OpenStack sub-module can run on a dedicated node, usually several sub-modules are co-located on a single
node or set of nodes.

API sub-modules are deployed on nodes that can be accessed by any cloud user. This arrangement makes it
possible to require services via API calls. In case OpenStack is used for implementing a public cloud platform,
these nodes must be accessible from Internet.

Mediator modules are deployed on nodes that cannot be accessed by cloud users because they implement
the internal logics of the IaaS cloud platform.

CLI (U) sub-modules are deployed on any machine that’s being used for submitting API calls to OpenStack.
These machines can be any node in the cloud but also any client machine running outside the cloud. For
instance, a cloud user can deploy these components on her PC in order to being able to submit API calls to
OpenStack.

CLI (A) modules are deployed on nodes that cannot be accessed by cloud users but need to be accessed by
the cloud administrator(s); they implement administration commands submitted by administrators, only. These
sub-modules are usually co-located on the same nodes hosting mediators.

GUI sub-module, being implemented as a web applications running under Apache HTTP server, is deployed
on machine accessible by the cloud users.

Agent sub-modules are deployed on nodes that make available the computational resources. For example,
nova-compute (the nova agent sub-module) is deployed on all the nodes running the hypervisors and hosting
the virtual machines activated in the cloud. Similarly, cinder-volume (the cinder agent) is deployed on any
node providing block storage resources (i.e. virtual disks).

Note that some Swift sub-modules are necessarily co-located because they collectively deliver the
management of a certain type of object on a node. For instance, swift-object* sub-modules collectively
manage files stored into a node of a cloud: swift-object sub-module fulfils object retrieval/store requests,
swift-object-replicator replicates objects in the cloud (according to the configured replication policies), swift-
object-updater updates objects (e.g. deletes objects) and swift-object-auditor reports information about the
received requests in the log file for auditing purposes.

D2.2.2 – Storm Clouds Platform Architectural Design Version 1.0

© Storm Clouds 2015 Page 17 of 52

The actual configuration of OpenStack is a quite complex and elaborated process that is out of the scope of
this document. OpenStack sub-modules are configured by editing a set of suitable configuration files
managed by the cloud administrator. Annex A reports an example. For more information about the
OpenStack configuration, please see the OpenStack community documentation page [16].

2.2.2 Virtualization Layer

This section briefly describes the virtualization technologies used for implementing the SCP.

It is worth noticing that OpenStack supports several and, in some cases, alternative virtualization technologies:
for instance, for delivering server virtualization services, OpenStack supports various hypervisors like Kernel-
based Virtual Machine (KVM), XenServer/XCP, Hyper-V, VMware vSphere, etc.

This document selects a set of virtualization technologies that form an integral part of the SCP architecture.
The selection is made according to the following criteria:

 Licensing: the technologies must be backed by some open software license;

 Functionality: the technology must support most of the functions made available by OpenStack;

 Documentation: the technology in itself and the integration with OpenStack must be well documented
and the documentation must be freely available;

 Minimal Software Requirements: the technology shall not require special or specific additional
software and must run on the selected operating system;

 Minimal Hardware Requirements: the technology shall not require special or specific hardware
features or devices for operating.

2.2.2.1 Server Virtualization

Server virtualization is the technology for creating and managing Virtual Machines: this kind of technology is
implemented by hypervisors.

OpenStack supports several hypervisors, as reported in the OpenStack Hypervisor Support Matrix [17].

The hypervisor selected for SCP is Kernel-based Virtual Machine (KVM) [18]; the following table shows how
KVM meets the selection criteria:

Criteria Notes

Licensing According to [19], “KVM's parts are licensed under various GNU licenses:

 KVM kernel module: GPL v2

 KVM user module: LGPL v2

 QEMU virtual CPU core library (libqemu.a) and QEMU PC system emulator: LGPL

 Linux user mode QEMU emulator: GPL

 BIOS files (bios.bin, vgabios.bin and vgabios-cirrus.bin): LGPL v2 or later”

Functionality According to [17], KVM and QEMU score the higher level of supported OpenStack
functions.

Documentation KVM documentation is freely available (see [18]). In addition, the integration with
OpenStack and the installation procedures are fully documented and freely available
(see [16])

Software
Requirements

According to [18] (see Status section), “KVM is included in the mainline linux kernel since
2.6.20...” and “It is also available as a patch for recent Linux kernel versions and as an
external module that can be used with your favourite distro- provided kernel going back up
to 2.6.16, therefore including all latest versions for Enterprise Linux Distributions.” For this
reason, KVM meets the minimal software requirements because Linux is the Operating
System selected for implementing SCP.

Hardware
Requirements

According to [18] (see Status section), KVM runs on several hardware architectures like
generic Intel®-based hosts and AMD-based hosts. The only requirement for KVM to
work is that the processors implement the virtualization technology (VT for Intel and SV
for AMD). This feature is normally implemented on processors used into typical server
and desktop machines.

Table 2-2- KVM Selection Criteria

Version 1.0 D2.2.2 – Storm Clouds Platform Architectural Design

Page 18 of 52 © Storm Clouds 2015

2.2.2.2 Storage Virtualization

Storage virtualization is the technology for creating and managing block storage elements (i.e. virtual disks)
used as persistent disks by the virtual machines.

OpenStack supports several storage virtualization technologies, as reported in the OpenStack Cinder Support
Matrix [20].

When selecting a block storage virtualization technology, in addition to the criteria defined in section 3.2.2,
we have also to take into account the type of protocol used by the VMs to communicate with the virtual disks.
In fact, normally VMs and virtual disks are hosted (or can be hosted) on different nodes; therefore when a VM
reads/writes data from/to virtual disks there must be a communication between the node hosting the VM and
the node hosting the virtual disk. This communication happens according to a protocol that must be supported
both by the virtualization technology managing virtual machines (i.e. the hypervisor) and the virtualization
technology managing virtual disks.

The following diagram summarizes the concept:

Figure 2-4 - Block Storage Virtualization

The picture also shows that, through virtualization, the VMs are completely “unaware” of what kind of physical
storage actually hosts the virtual disks (VDisks, in the picture). Supported solutions range from local disks,
directly connected to the Block Storage Node mother board through SCSI bus, to dedicated storage
appliances.

The technologies selected for implementing the SCP block storage virtualization are:

 Storage Virtualization Target: Linux SCSI target framework [21], known as tgt, is a software
package installed on a Linux-based block storage node and works as an iSCSI target providing an
interface for accessing virtual disks;

 Protocol: Internet SCSI (iSCSI) [22], an IP-based storage networking standard for linking data
storage facilities;

 Physical Storage: Logical Volume Manage (LVM) [23], providing a volume group local to the block
storage nodes.

The following table shows how selected technologies meet the selection criteria:

Criteria Notes

Licensing tgt is free software under the terms of the GNU General Public License [24]
LVM is available under GNU General Public License [25]

Functionality According to OpenStack Cinder Support Matrix [20], the selected technologies are
considered as the reference for OpenStack development; in this perspective, they fully
support all the OpenStack functions

Documentation tgt documentation is freely available (see [21])
LVM documentation is freely available (see [23])
OpenStack integration and the installation procedures are fully documented and freely
available (see [16])

Software
Requirements

tgt runs on many widely used Linux distribution like RHEL, CentOS, Fedora, SUSE,
Debian, Ubuntu and Gentoo. It requires Linux kernel 2.6.22 or higher [21].
LVM runs on many Linux distributions like CentOS, Debian, Fedora, Gentoo, Mandriva,
MontaVista Linux, openSUSE, Pardus, Red Hat Enterprise Linux, Slackware, SLED, SLES,
Linux Mint, Kali Linux, and Ubuntu [25].

Hardware No specific hardware configurations or devices are required for running the selected

D2.2.2 – Storm Clouds Platform Architectural Design Version 1.0

© Storm Clouds 2015 Page 19 of 52

Criteria Notes

Requirements technologies. On the other hand, any mass storage device that can be mounted on the
selected Linux operating system as a read/write disk is supported.

Table 2-3 - Block Storage Technologies Selection Criteria

2.2.2.3 Network Virtualization

Network virtualization is by far the most complex area in OpenStack. This is due to the inherent complexity of
the topic in itself and the large amount of alternative technologies that can be used in OpenStack
deployments. For more information on the supported network virtualization technologies, see [26].

In order to fully support the functions required by OpenStack, the underlying networking technologies need to
collectively provide services for creating/managing virtual objects or services of various types like L2 network
entities (e.g. layer 2 trunks, ports, etc.), L3 entities (e.g. IP addresses NATting, firewall services) and a DHCP
service.

The networking virtualization technologies selected for SCP are:

 Open vSwitch: implements a distributed virtual multilayer switch . It provides API for creating virtual
switchaes and for connecting virtual machines. Virtual switches are hosted on the same nodes running
the VMs that are connected;

 Linux iptables: it’s a technology, natively supported by many Linux distributions, that allows the
system administrators to directly operate on network packet filtering and NATting tables and it’s
implemented by Linux operating system at kernel level [27]. OpenStack integrates with iptables for
implementing firewalling and NATting functions;

 dnsmasq: “Dnsmasq provides network infrastructure for small networks: DNS, DHCP, router
advertisement and network boot” [11]. In OpenStack deployments, dnsmasq mainly implements
functions for distributing IP addresses to VMs via DHCP.

The following table shows how the selected technologies meet the selection criteria:

Criteria Notes

Licensing Open vSwitch is open source software available under Apache 2.0 license (see [28]).
Linux iptables is made available under GNU General Public License (see [29]).
Dnsmasq is distributed under GNU General Public License, version 2 and 3 (see [11]).

Functionality The combination of the selected underlying technologies is considered the reference for
OpenStack development; therefore it fully supports the OpenStack functions.

Documentation The selected technologies are fully described on freely available documentation (see
[28], [29] and [11]). In addition, the OpenStack integration and installation procedures
are fully documented and freely available (see [16]).

Software
Requirements

Open vSwitch is officially available for Debian, Fedora and Ubuntu Linux distributions
(see [30]).
Linux iptables runs under any Linux distribution fully supporting Linux kernel version 2.4.x
and 2.6.x (see [31]) that are, in turn, integral part of most of the Linux distributions like
CentOS, Debian, Fedora, openSUSE, Red Hat Enterprise Linux, and Ubuntu.
Dnsmasq: according to [11], “Supported platforms include Linux (with glibc and uclibc),
Android, *BSD, and Mac OS X” and “Dnsmasq is included in most Linux distributions and
the ports systems of FreeBSD, OpenBSD and NetBSD”. As described in OpenStack
installation documentation [16], dnsmasq is supported by Debian, openSUSE, SUSE Linux
Enterprise Server, Red Hat Enterprise Linux, CentOS, Fedora and Ubuntu Linux
distributions.

Hardware
Requirements

No specific hardware configurations or devices are required for running the selected
technologies; on the other hand, OpenStack deployments can significantly benefit of
hardware configurations where nodes are equipped with multiple Network Interface
Cards (NICs). For more information, see section Error! Reference source not found..

Table 2-4 - Networking Technologies Selection Criteria

2.3 Deployment View

OpenStack can be deployed in several ways but there are some well-known and accepted good practices
for implementing deployment architectures. Usually, the deployment architecture also depends on the scope
and the purpose of the cloud and/or the constraints on the physical hardware that is being used (e.g. number
and type of physical machines, network connections, etc.).

Version 1.0 D2.2.2 – Storm Clouds Platform Architectural Design

Page 20 of 52 © Storm Clouds 2015

Options range from single-node all-in-one deployment - where all the modules are installed on a single node
that also provides the physical resources for hosting virtual resources2 to very complex deployments
addressing many requirements like high availability of the IaaS platform, nodes distribution in multiple data
centres, support to different hardware technologies, etc.

2.3.1.1 Deployment Models

In this section, we provide some deployment examples (i.e. models) that can work as a reference when
designing an actual cloud platform.

Basic Deployment

Figure 2-5 - OpenStack Basic Deployment

The nodes in the deployment architecture are:

 Cloud Controller Node: it hosts all the centralized functions like the cloud status database, the
message broker, the compute and the storage schedulers, API endpoints, authentication services,
image catalogue, orchestration engine, monitoring and accounting functions, the web dashboard
server, etc.;

 Network Controller Node: it hosts some network services like DHCP, layer 2 switching, layer 3 routing
and also provides access to VMs from Internet;

 Storage Node: it hosts virtual disks;

 Compute Node: it hosts the VMs running in the cloud.

The networks in the deployment architecture are:

2 This deployment is suitable for demos and development use cases

D2.2.2 – Storm Clouds Platform Architectural Design Version 1.0

© Storm Clouds 2015 Page 21 of 52

 Management Network: it is used for the communication between the OpenStack elements;

 Data Network: it is used for the communication between the VMs running in the cloud and for giving
VMs access to Virtual Disks;

 External Network: it is used for the communication between the VMs running in the cloud and any
other element external to the cloud (e.g. end users on Internet);

 API Network: it exposes all OpenStack API endpoints.

A variation of this deployment “collapses” the functions of compute and storage nodes into a single node type
providing both the resource types: such a deployment model is described in the OpenStack official
documentation [32].

It is worth noticing that the deployment described above does not address some important aspects like high
availability and load balancing; on the other hand it can be used for development and testing purposes.

Medium Complexity Deployment

Figure 2-6 - Medium Complexity Deployment

In this deployment some subsystems are deployed as Active-Passive clusters (see Appendix A – Active-Passive
Cluster on Linux Platform) in order to implement high availability.

API FEE (hosting API daemons) and Object Storage Proxies (running swift-proxy-server) are accessed through
load balancing clusters implemented with HAProxy (see Appendix A – Active-Passive Cluster on Linux
Platform) for distributing users' request workloads across multiple nodes.

Two node types implement the Object Storage services. Object Storage Proxy receive the cloud user’s
requests for uploading/downloading files in the cloud. They host the Object Storage API front ends (i.e. swift-
proxy-server); the reason for dedicating a node type to this software component is that these nodes receive
all the requests for uploading/downloading files to/from the cloud resulting in a significant workload and,
more important, network traffic. As described in the picture, Object Storage Proxies are directly connected to
the External Network. Object Storage Nodes are dedicated to store the user’s objects (i.e. files).

For more information on high availability/load balancing deployment, see also [33].

Version 1.0 D2.2.2 – Storm Clouds Platform Architectural Design

Page 22 of 52 © Storm Clouds 2015

2.3.1.2 Availability Zones

When planning an OpenStack deployment, the OpenStack architect should decide where to locate various
types of resource nodes (i.e. compute nodes, block storage nodes, and object storage nodes). For example,
s/he may decide to place all the compute nodes in a single rack in a data centre but s/he can install some
compute nodes in data centre A and some other in a different data centre B, in order to implement a more
reliable solution. In this way, should a data centre be unavailable (for example for a network or power
outage), the other would still work for providing services to users. By deploying OpenStack on different data
centres, the architect can obtain a more reliable infrastructure at IaaS service level: in case of a data centre
failure, a cloud user can still create and manage IaaS objects (e.g. VMs , vitual disks, etc.) hosted on the other
data centre.

However, in case a VM is activated on a data centre that fails, the application(s) running on top of it become
unavailable. In fact, OpenStack does not include any mechanism to automatically 'move' a VM from a failed
compute node to another and does not provide any other automatic high availability mechanism. Cloud users
are expected to implement high availability themselves activating multiple VMs in a cluster configuration,
maybe similar to the one illustrated in Appendix A – Active-Passive Cluster on Linux Platform.

Starting several VMs for implementing a cluster is not sufficient in itself, though; cloud users must also be sure
that the VMs in a cluster are actually distributed on different nodes (maybe in different data centres) so that
in case of failure of a node, the cluster is still operating. In fact, if all the VMs of a cluster were hosted on a
single node, the unavailability of such a node would stop the whole cluster. Similar problems raise if the VMs
of the cluster are hosted on different nodes of a single data centre and the data centre becomes unavailable.

In order to address the issue, OpenStack implements Availabilty Zones. An availability zone is a set of nodes
that cloud administrators can use for grouping servers. Failures on a node in an availability zone should not
cause or be related to failures of nodes in a different availability zone. For example, Availability Zone A
could group all the nodes in data centre A while Availability Zone B could group all the nodes in data centre
B.

Figure 2-7- OpenStack Deployment - Availability Zones

When creating a VM, cloud users can specify what availability zone the VM must be hosted; in this way they
can implement reliable clusters by distributing VMs on different Availability Zones. For example, if a cloud
user wants to implement an active-passive cluster (see Appendix A – Active-Passive Cluster on Linux Platform),
she can specify that the active VM runs on Availability Zone A, the passive VM on Availability Zone B.

It's worth saying that OpenStack availability zones merely group nodes. OpenStack in itself does not define
limitations or constraints on how nodes are grouped together. In case of a large scale OpenStack deployment
with several data centres, all the nodes in a data centre can be mapped into an availability zone but, in case
of moderate size or small deployment, an availability zone can group servers in a single rack or even a single
server. It's cloud administrator's responsibility to group nodes in availability zones that ensure some sort of
'independence' among nodes.

D2.2.2 – Storm Clouds Platform Architectural Design Version 1.0

© Storm Clouds 2015 Page 23 of 52

The examples in this section show availability zones for grouping compute nodes but also block storage nodes
and object storage nodes can be grouped into availability zones allowing the implementation of high
available topologies of IaaS objects in general (e.g. VMs, virtual disks and files).

2.4 Data Back-Up Using the IaaS Platform Services

This section describes how to use the services provided by the IaaS platform for implementing back-up
functions on the virtual machines running in the cloud.

The solution tries to best exploit the features implemented by the IaaS layer where virtual machines are
hosted; more specifically backup data are stored using Swift, the Object Storage Service implemented by
OpenStack. Swift deployments keep uploaded objects (i.e. files) in multiple copies (three by default) ensuring
that the configured number of copies is always preserved independently on any failure occurring on the
underlying pieces of infrastructure (e.g. disk or server failures).

The solution is based on Duplicity [10], an open software package available under GPL license for Unix-like
and Linux operating systems. It implements "encrypted bandwidth-efficient backup, using the rsync algorithm"
and supports several storage back-ends used for keeping the backup data, Swift included.

Duplicity uses key-pairs for encrypting, signing and decrypting backup data: the public key is used for
encrypting data before back-up; the private is used both for signing data before backup and decrypting
data when restored. Key-pairs are Pretty-Good-Privacy (PGP) format managed using GnuPG [34], a free
implementation of the OpenPGP standard [35].

Duplicity implements full and incremental backup and uses the rsync [36] algorithm for optimizing both the
network bandwidth and the data storage used for backup "because only the changed parts of files are sent to
the archive when doing an incremental backup" [10].

Duplicity software package must be installed on the virtual machines that need to implement backup features
and it is configured to store data into the object storage of the underlying IaaS platform (Swift). Figure 2-8
briefly summarizes the concept:

Figure 2-8 - Duplicity Deployment

In the architecture described here, Duplicity is a fundamental building block for implementing backup functions
but a complete backup solution is a more complex topic that usually must be designed taking into account
several aspects related to the data and/or the application(s) managing the data to backup. What to backup,
when to backup, how long data must be kept, how long it takes to backup, how long it takes to restore, etc,
require an in-depth analysis of the data and the applications in order to define the best backup strategy to
put in place. All these aspects cannot be dealt here and are to be handled case-by-case considering the
application requirements.

For instance, if the virtual machine hosts a MySQL database engine and we would like to backup the data in
the database, a full backup solution could be implemented by using mysqldump [37] for extracting data
from the database, store the mysqldump output into a directory and finally use Duplicity to upload the
directory contents to Swift. Even in this simple scenario, some aspects need to be analyzed. While mysqldump
is running, MySQL tables are write-locked with the consequence that the application cannot write data in the
database; this implies that the backup must happen at a time when very likely the application is not used or
used for reading data, only. If something goes wrong during the backup, some corrective action must be taken

Version 1.0 D2.2.2 – Storm Clouds Platform Architectural Design

Page 24 of 52 © Storm Clouds 2015

or some personnel need to be informed. All these aspects really depend on the application and shall be
individually addressed when an actual backup solution is implemented.

D2.2.2 – Storm Clouds Platform Architectural Design Version 1.0

© Storm Clouds 2015 Page 25 of 52

3 Platform as a Service Layer

3.1 Concept

While IaaS focuses on managing the fundamental infrastructure building blocks in a cloud environment, thus
allowing to transfer any existing deployment to the cloud with little or no architectural changes, Platform as a
Service (PaaS) [38] goes one step further and focuses on managing applications instead of infrastructure. The
target user in this case is the application developer, who can deploy an application to the PaaS and expects
it to just work, delegating all infrastructure management tasks to the PaaS and focusing on development work
instead.

As a consequence, the main resources involved in deploying an application to a PaaS are not virtual machines,
virtual storage and virtual network objects, but application services, configuration and artifacts, as shown in
the figure below:

Services Configuration Artifacts

Developers

PaaS Platform

Physical Hardware / IaaS

Figure 3-1 – Platform as a Service – Conceptual View

Services are any external component that the application requires in order to run (e.g. a database, a
messaging service, etc.). They are provided by the PaaS platform directly and the user can request their use
for her own application. For example the user can request the creation of a MySQL database schema and the
PaaS will create one on the local MySQL service, without the need for the user to install and manage a
private MySQL instance.

Configuration resources include the regular application settings, but also the parameters needed by the PaaS
to deploy the application, such as the required RAM and disk size, the required runtime resources (such as the
JDK and application server for Java web applications) and the services (such as the database) that must be
made available to the application. Depending on the platform, the configuration may also include thresholds
for automatically scaling the application as load increases or decreases.

Artifacts represent the application binaries that must be deployed on the PaaS, according to the specified
configuration and using the specified services.

Since they work at the application level, PaaS platforms are a great way for developers to deploy scalable
and highly available applications without requiring advanced infrastructure skills or a dedicated operations
team. On the other hand, this comes at the price of some restrictions in terms of system customization. In fact,
since the deployment platform is standardized, developers must take care of using technologies that are
supported by the platform. For instance, if the platform supports only Java and PHP, a .NET application will
not run on it. Similar considerations apply for application servers and database engines. However, typical
web applications that run in the cloud use standard components that are supported by major PaaS platforms,
so these constraints are not a problem in most cases.

Finally, it is worth noting that IaaS and PaaS are not mutually exclusive, since a user may choose to run some
services on a IaaS and use them from an application deployed on a PaaS. The two approaches can also be
combined together from the cloud provider point of view. In fact while the provider may run the PaaS on

Version 1.0 D2.2.2 – Storm Clouds Platform Architectural Design

Page 26 of 52 © Storm Clouds 2015

bare metal directly, she may also choose to run it on top of a IaaS in order to take advantage of resource
scalability without the need to provision new physical hardware.

3.2 Logical View

The PaaS platform selected for SCP is Cloud Foundry [6].

Cloud Foundry is an open source project, released under the business-friendly Apache License 2.0, started by
VMware® in 2011 [39] and subsequently led by Pivotal® (a joint venture between VMware and EMC). In
February 2014, Pivotal announced that the project would be governed by a Cloud Foundry Foundation [40]
with strong industry support from major companies. The Foundation was established in December 2014[41]
with EMC, HP, IBM, Intel, Pivotal, SAP and VMware as platinum members.

The sound architecture, industry backing and open governance model all contribute to make Cloud Foundry an
attractive choice as a platform that may become the de-facto open-source standard PaaS in the future,
similar to what OpenStack represents in the IaaS field.

The figure below shows the logical architecture of Cloud Foundry [42]:

Droplet Execution
Agent 1

App 1 App 2

Blob Store

Managed Service

Droplet Execution
Agent 2

App 3 App 4

Broker Service

User-Provided
Service

Service

NATS Message Bus

Metrics Collector Log Aggregator

Cloud Controller Health Manager

UAA OAuth 2 Server Login Server

Router

Figure 3-2– Cloud Foundry Logical Architecture

At the top level, the Router component receives all incoming traffic and dispatches it either to the Cloud
Controller or to applications, while the OAuth2 Server and Login Server handle authentication of Cloud
Foundry users.

The Cloud Controller is the component that manages the lifecycle of applications deployed on the cloud,
taking care of starting them, connecting the required services and so on. Application status is monitored by the
Health Manager, which can trigger a re-spawn in case an application dies unexpectedly.

D2.2.2 – Storm Clouds Platform Architectural Design Version 1.0

© Storm Clouds 2015 Page 27 of 52

The Droplet Execution Agents (DEAs) are the components that actually host applications in Cloud Foundry.
While a minimal deployment may have a single DEA, in most cases there will be multiple DEAs each running
on a different machine. In order to support multi-tenancy, each application is run in a private environment
within the DEA. However, instead of isolating environments using virtual machines as IaaS platforms do, Cloud
Foundry uses operating system containers [43] managed via the Warden [44] component. The Warden
implementation for Linux is in turn based on Control Groups [45]. Container technologies take advantage of
APIs implemented at the operating system level in order to create an isolated environment (i.e. the container)
with its own file system, software packages, processes, memory space and network resources. Processes in a
container cannot read data in other containers or interfere with processes in different containers and
interaction between containers is only possible via traditional intermachine communication, such as network
connections. In other words, containers only share the underlying operating system. With respect to traditional
virtualization, this approach requires all applications to be designed to run on a common platform (i.e. a
certain version of a single operating system) but also offers several advantages in terms of reduced
overhead. In fact, there is no need to spawn a new full machine with its operating system copy for each
application: all applications share the same operating system installation, thus reducing the perapplication
RAM and disk footprint dramatically and allowing higher application density on a single physical machine. In
addition, because there is no virtualization involved, containers offer additional flexibility in terms of
deployment. In fact, the PaaS can run on bare metal, removing the hypervisor overhead and optimizing
performance, but it can also be installed over an IaaS layer, thus maximizing flexibility.

In addition to allocating a container on a DEA, running an application requires a buildpack, which consists in a
package that is able to detect the application type, install the required runtime components and execute the
application. Cloud Foundry provides official buildpacks for Java, PHP, Python, Ruby, Node.js and Go, while
additional buildpacks are provided by the community. It is possible to create custom buildpacks by
implementing the required script-based interface. When a developer pushes an application to Cloud Foundry,
she can specify a buildpack to use or let the platform auto-detect the application type. For example in case
of a Java Web Application, the buildpack may check if the application contains a WEB-INF/web.xml file.
Every buildpack must implement a detection script that returns successfully if the buildpack can run the
application, so that Cloud Foundry can automatically find a suitable buildpack by invoking that script on
every available buildpack. In addition to detection, buildpacks implement a script that installs the required
runtime components, such as the JDK and application server for a Java Web Application. These additional
software packages may be included in the buildpack itself or downloaded from the Internet, when required.
Finally, the buildpack implements a third script that Cloud Foundry invokes to start the application.

As it is mentioned earlier, most applications need to interact with services, such as databases, which are not
part of the application and must be provisioned by the platform. Cloud Foundry supports two kinds of
services: Managed Services and User-Provided Services. A Managed Service is fully integrated with the
platform and can be provisioned on user request by Cloud Foundry. For example, if the service is a
database, Cloud Foundry can create a new schema on it when the user requests a new instance of the service.
Once a service instance has been created it can be bound (i.e. made available) to a certain application of
the user. In order to satisfy different requirements, each service can offer several plans that define the
features of the service instance, similar to flavours in the IaaS world. For example, a “smalldb” plan may
provide a 100 MB database on a single server, while a “largedb” plan may provide a 10 GB database
replicated over two servers. Cloud Foundry controls Managed Services via a component called broker that
must be provided with the service and implements the Service Broker API. Cloud Foundry includes a broker for
MySQL, but brokers for other services are available from the community and of course it is possible to
integrate any service by implementing a custom broker. In cases when full integration with Cloud Foundry is
not required or desired, it is possible to use User-Provided Services. In this case service instances, such as
database schemas, are created outside of Cloud Foundry with traditional mechanisms. Once created,
instances must be registered in Cloud Foundry before they can be bound to applications.

Other components in the architecture include the Blob Store, which holds application binaries and buildpacks,
and NATS. The latter provides a publish-subscribe system that Cloud Foundry components use to communicate
with each other.

Finally, the Metrics Collector can gather various metrics from the platform components in order to monitor
system health, while the Log Aggregator collects the logs of applications deployed in DEAs so that users can
inspect them. Note that the Metrics Collector allows writing plugins, called “historians”, in order to export data
to external services. This enables integration with general purpose monitoring tools, such as Zabbix or Nagios
that will be used to consolidate metrics from all components of the whole SCP platform in a single place. See
section 5 for further discussion about the monitoring infrastructure.

Version 1.0 D2.2.2 – Storm Clouds Platform Architectural Design

Page 28 of 52 © Storm Clouds 2015

The main tool for controlling a Cloud Foundry installation is the Command Line Interface, available for
Windows, Linux and Mac OS X. Thanks to the CLI it is possible to write scripts to automate tasks such as
deploying new versions of applications or scaling horizontally according to the current workload. Additional
developer tools include an Eclipse [46] plugin, that allows to configure and deploy applications directly from
the IDE, and plugins for Maven [47] and Gradle [48].

3.3 Deployment View

Because Cloud Foundry relies on containers instead of virtual machines in order to run applications, it is
possible to deploy the platform both on bare metal hardware and on virtual infrastructure. While bare metal
may be an interesting option when performance is critical, deploying Cloud Foundry on virtual infrastructure,
especially on an IaaS, allows obtaining maximum flexibility in terms of scalability, high-availability and costs.
In fact when the PaaS is deployed on an IaaS, it can run with a minimal number of components (e.g. DEAs)
when load is light and exploit the autoscaling features of the IaaS to dynamically allocate new instances when
the load increases. When the load decreases again, the number of instances can be scaled down back to a
minimum. This model of operation is particularly attractive when thinking of a deployment on a IaaS public
cloud provider. In fact, costs can be minimized by keeping the number of instances low when the load is
limited, at the same time achieving optimal performance by increasing the number of instances only when
necessary. In addition, using a public IaaS removes the initial investment required to acquire the hardware
infrastructure and the subsequent costs for infrastructure upgrades. Regarding high availability concerns,
deploying on an IaaS allows replicating components over independent availability zones, which may be
geographically distributed in case of a public IaaS.

It is worth noting that while the SCP aims at providing a flexible architecture that allows full control over both
IaaS and PaaS resources, either on a private or public cloud, this implies the burden of administering the
platform. Organizations that wish to benefit from the PaaS abstraction without delving into the details of the
underlying infrastructure can rely on one of the public cloud providers that offer ready-to-use Cloud Foundry-
based platforms and delegate management of all the underlying layers to the provider.

3.3.1 BOSH

Before discussing the different architectures that can be implemented for the PaaS layer of the SCP platform,
it is worth introducing BOSH [49], which represents the recommended way of deploying Cloud Foundry. BOSH
is an orchestration and automation system that can deploy complex systems to one of the supported cloud
back-ends: Amazon Web Services, OpenStack and VMware vSphere. In order to deploy a system, such as
Cloud Foundry, BOSH needs a release and a manifest. A release is a package compliant with a standard
structure defined by BOSH and containing a certain version of the system, including binaries, configuration
files and control scripts that allow starting, stopping and monitoring the components. The manifest, written in
the YAML [50] markup language, contains a formal definition of the architecture and configuration of the
system. In fact, many of the configuration files included in the release are actually templates, with
placeholders that are replaced with the values found in the manifest to produce the final configuration. While
going into the details of the manifest is beyond the purpose of this document, it is important to introduce the
concepts of jobs, which directly map to virtual machines that will be created in the cloud. For example, the
default manifest for Cloud Foundry declares a dedicated job for each component, such as the Cloud
Controller and NATS. This means the two components will run on separate virtual machines in the cloud.
However, smaller scale deployments may define a manifest in which the two components are included in the
same job, so that only one virtual machine is created in the cloud in order to reduce costs.

Error! Reference source not found. Figure 3-3 shows a simple BOSH deployment with two jobs.

MicroBOSH Job 1

BOSH Agent

Job 2

BOSH Agent

Monit

Monit

NATS

Director Health Mon

Figure 3-3 – Simple deployment managed by MicroBOSH

D2.2.2 – Storm Clouds Platform Architectural Design Version 1.0

© Storm Clouds 2015 Page 29 of 52

BOSH is composed of several components that can be deployed over multiple machines to distribute load in
large scale deployments, but in smaller scale situations it is often more convenient to run BOSH on a single
machine. This can be accomplished using a special distribution of BOSH called MicroBOSH. All BOSH
components communicate with each other via a publish-subscribe system called NATS. The BOSH Director is
the core component in charge of orchestrating the deployment, while the Health Monitor, discussed in more
detail below, checks that all jobs in the deployment are working correctly. Note that BOSH includes additional
service components that are not relevant for the sake of this discussion, so they have been omitted for
simplicity. Each job deployed by BOSH is executed on a dedicated virtual machine running a BOSH agent,
which is in communication with the Director and Health Monitor. The agent receives commands stating which
packages must be installed and executed on the node and sends constant heartbeat messages to confirm that
the machine is still active.

This introduces another important feature of BOSH called self-healing. In fact, thanks to the in-depth
knowledge of the system given by the joint usage of the information contained in releases, manifests and the
status data received from the agents, at any point in time BOSH can check that all the required components of
the system are running and in case of failures trigger a redeploy of the failing components.

Monitoring and healing happen on two levels. The first one is local to the virtual machine running the job,
thanks to Monit [51]. This is a small daemon that acts as a watchdog for the services that are supposed to run
on the machine, such as the Cloud Foundry Cloud Controller or a PostgreSQL database. Monit is configured in
order to know how to check each service (e.g. by verifying a Process Identifier (PID) file exists) and how to
start and stop it. In this way when Monit detects that a required service is not running anymore it can try to
restart it automatically, without the need for external intervention. The second level of healing is external to
the job instance and performed by the BOSH Health Monitor. Since each job sends constant heartbeat
messages via the BOSH Agent, the Health Monitor can verify that all required jobs in the deployment are
running. If a job has failed, the Health Monitor can automatically deploy a new instance of it thanks to a plug-
in called Resurrector. Of course, there may be situations when critical failures prevent the automatic repair of
the system and even when the system is restored successfully the failures may point to problems that must be
analysed to prevent them from happening again in the future. Thus the Health Monitor can be configured to
send out notifications via configurable plug-ins (e.g. e-mail or Amazon CloudWatch) every time a component
fails, even when it has been restored automatically. Note that Monit sends a notification to the Health Monitor
via the BOSH Agent every time it detects an anomaly, so that even failures detected locally are known to the
central BOSH system. Finally, note that the self-healing features of BOSH allow restoring the required number
of instances but do not take any special step to protect application data. This point has to be addressed
separately via the appropriate redundancy and backup measures.

Thanks to the features explained above, a system deployed with BOSH automatically gains a first level of
fault-tolerance, albeit with some downtime between the failure and the moment BOSH detects and repairs it.
While the high-availability needs of applications that cannot tolerate any downtime require replication of
components, as we will discuss later, the self-healing provided by BOSH may be enough for non-critical
applications, and even in replication scenarios it helps to automatically restore the required number of
redundant instances.

3.3.2 Small Scale Deployment

The first architecture that we describe for the PaaS layer is a simple, non-replicated deployment. While this
kind of architecture is not adequate for business critical applications that cannot afford downtime periods, it is
also easier and cheaper to manage with respect to a fully replicated deployment. Therefore, this architecture
is usually chosen for development and testing environments and is also viable for non-critical applications for
which short downtimes can be tolerated in exchange for savings on infrastructure. Within the Storm project,
this architecture provides an initial working platform to be used for migrating and testing the applications
selected by the municipalities in a cloud environment that is functionally equivalent to the final one. If required,
the architecture can also be implemented on-premises with limited hardware requirements. A highly available
production-ready architecture will be described in the next section.

Version 1.0 D2.2.2 – Storm Clouds Platform Architectural Design

Page 30 of 52 © Storm Clouds 2015

Based on the above considerations, Figure 3-4 shows the deployment view for the PaaS layer.

Cloud Foundry DEA 1

Application 1

Application 2

Cloud Foundry DEA 2

Application 3

Cloud Foundry
Components

SCP Database Layer MicroBOSH

OpenStack

Figure 3-4 – Platform as a Service – Small scale deployment

In order to exploit the flexibility advantages of allocating resources on an IaaS, Cloud Foundry is deployed
on top of OpenStack, which implements the IaaS layer in the SCP platform. The deployment of Cloud Foundry
is done via MicroBOSH in order to benefit from the orchestration and self-healing features described in
section 3.3.1.

Since this version of the architecture does not address replication, there is only a single instance for each
component and all Cloud Foundry components except DEAs are deployed on a single virtual machine in order
to spare cloud resources. DEAs are deployed to separate machines because they run the actual user
applications, which may require significant computing resources. Furthermore, it may be necessary to deploy
multiple DEAs depending on the number of applications and their compute resources requirements. In fact in a
cloud environment it is often useful to adopt a horizontal scalability philosophy, that privileges using multiple
smaller DEAs instead of fewer large ones, in order to increase parallelism and avoid single points of failure.
Finally note that in Figure 3-4 the database services are delegated to the Database Layer provided by the
SCP. If implementing the architecture on a private installation, the Database Layer may be replaced by
regular single-instance installations of the required database engines.

3.3.3 Large Scale Deployment

While the simple architecture described in 3.3.2 is adequate for some scenarios, high-traffic business-critical
applications must be supported by an architecture that is both highly available and scalable. Both features
are achieved by running multiple instances of each component, which provide both high availability, since the
system has no single point of failure and continues to work using the remaining instances when one of them is
broken, and scalability, since load can be distributed among the available instances. This section describes
how these concepts can be implemented in the SCP PaaS layer.

First of all it is important to note that when considering a cloud platform, high availability must be
implemented both at the platform level and at the application level. In fact, the platform itself must remain
available in case of failures, but even if the platform is fault-tolerant it cannot prevent a single application
instance from going down if the hardware on which the application is running fails. Therefore, the application
must also be deployed redundantly.

The fundamental assumption behind redundancy is that if one of two redundant instances fails, the other one
remains online and continues to work normally. Ultimately, this requires that the two instances run on different
hardware, because if the two instances were virtual machines running on the same host, a failure of the host
would bring both instances offline thus defeating the purpose of redundancy. In order to address this concern,
cloud platforms introduce the concept of availability zone, meaning that two resources in different zones do
not share any single point of failure. In fact, in addition to separate hosts, zones should use different storage
and be connected to different networks and power circuits, so that any failure in a zone does not affect the
others (see also section 2.3.1.2).

D2.2.2 – Storm Clouds Platform Architectural Design Version 1.0

© Storm Clouds 2015 Page 31 of 52

Based on the considerations above, Figure 3-5 shows the architecture of the SCP PaaS layer for a large scale
deployment.

MicroBOSH Cluster
MicroBOSH 1

SCP Database Layer
DB Instance 1

CF ClusterLogin 1 + Metrics 1 +
NFS 1

LB Cluster
HAProxy 1

Scalable CF
Components 1

DEA 1

App 1a App 2a

Availability Zone 1

OpenStack

MicroBOSH 2

DB Instance 2

Login 2 + Metrics 2 +
NFS 2

HAProxy 2

Scalable CF
Components 2

DEA 2

App 1b App 2b

Availability Zone 2

Quorum Node

Quorum Node

Quorum Node

Quorum Node

Availability Zone 3

Figure 3-5 – Platform as a Service – Large scale deployment

As in the small scale case, the architecture is based on a IaaS layer, represented by OpenStack, with the
additional assumption that the IaaS implements three availability zones over which components are
replicated. Two of the zones host components doing the real work, while the third one is required for
providing quorum nodes to the clusters. In fact, as explained in Appendix A – Active-Passive Cluster on Linux
Platform, two-node clusters are not recommended since they are subject to split-brain issues. However, note
that resources in the third zone need little computational power and resources since they only run the cluster
daemon with no actual services above it, which helps reducing costs.

Since BOSH is used to manage the deployment of Cloud Foundry and monitor its health, it becomes itself a
component to consider in the high-availability analysis. To this end, BOSH saves all data about deployments
on a persistent block storage volume, so that data is not lost even if the BOSH virtual instance fails. In that
case, BOSH can be restored by creating a new MicroBOSH instance and attaching the existing data volume
to it [52]. Once deployed, Cloud Foundry continues to work without any issue even if BOSH goes down,
although the platform loses some important safety checks such as the Health Monitor and auto-repairing via
the Resurrector. Furthermore it is impossibile to scale the platform up or down (e.g. by adding or removing
DEAs) while BOSH is down, because these actions depend on the Director. So while BOSH is not strictly critical
for applications, it is desirable to protect it so that it is possible to manage the Cloud Foundry deployment
uninterruptedly. BOSH does not support any special high-availability features for itself, but it can be
protected just like any other application using an active-passive cluster with replicated data for the persistent
volume, as described in Appendix A – Active-Passive Cluster on Linux Platform. As explained above, the
cluster is composed of three members in different availability zones, with two nodes hosting the active and
passive instances of MicroBOSH and a third node that will never run MicroBOSH and acts as a quorum node
only.

Regarding Cloud Foundry, while BOSH can auto-repair the system in most cases that implies some downtime
of the failed component until BOSH notices the problem and tries to solve it, which is not acceptable in a
critical system. Therefore, all critical components in Cloud Foundry must be redundant. Most of them support

Version 1.0 D2.2.2 – Storm Clouds Platform Architectural Design

Page 32 of 52 © Storm Clouds 2015

multiple active instances working together by design [53], which allows to enhance scalability by distributing
load over them and does not require to set up an active-passive cluster. This is the case of the DEAs and
components such as the Router and the Cloud Controller, that in our architecture are deployed in an instance
called Scalable Cloud Foundry Components, replicated in the two availability zones. Note that BOSH supports
assigning jobs to a certain availability zone in the manifest, so that the correct placement of components is
granted. While this example considers two instances in two availability zones, very high-traffic deployments
may be require three or more instances of some components, which may be deployed by increasing the
number of instances per zone (e.g. two instances in each zone) or by adding more availability zones (even if
this may be more difficult due to the independence requirements). Also note that since we have multiple
instances of the Router, which is the entry point to Cloud Foundry, it is necessary to put a load balancer in
front of the system so that incoming traffic can be distributed properly among the available Routers. However
the load balancer, in our case implemented via software using HAProxy [54], may become itself a single
point of failure for the system, so it must be protected with an active-passive cluster, as described in Appendix
A – Active-Passive Cluster on Linux Platform.

Some components of Cloud Foundry, namely the Login Server and the Metrics Collector, are not considered
critical since short downtimes will not prevent the system from running, but they will nonetheless affect some
functionalities such as the ability to login to the API. So in the context of a highly available architecture they
can be protected with an active-passive cluster to avoid any downtime. Furthermore, Cloud Foundry
implements the Blob Store using the standard Linux Network File System (NFS) daemon. Since NFS is standard
software, Cloud Foundry does not implement any special redundancy feature for it, but again the problem
can be solved with standard solutions, such as an active-passive cluster with replicated storage. As the Login
Server, Metrics Collector and NFS have similar high-availability needs, they have been assigned to the same
cluster in our architecture for the sake of resource optimization. Of course, they may be deployed to
dedicated instances if required by performance considerations.

Since Cloud Foundry relies on a PostgreSQL database for the needs of components such as the Cloud
Controller and UAA, the database must also be protected from failures. However, the SCP already offers a
Database Layer that provides the required high availability, so it is enough to configure Cloud Foundry to use
an instance in the Database Layer instead of the internal PostgreSQL installed by default by Cloud Foundry.

As anticipated above, after discussing high availability at the platform level it is important to do the same at
the application level. Since Cloud Foundry is designed with resiliency in mind, it includes a component called
Health Manager (not to be confused with the Health Monitor in BOSH) that periodically receives heartbeat
messages from the DEAs, reporting the status of each application instance deployed on the DEA. In this way
the Health Manager can constantly check that the number of running instances for each application matches
the expected value and, in case some instances are missing, recreate them. However, just as noted previously
for the BOSH Resurrector, the Health Manager cannot avoid a certain downtime period before instances are
restored and there may cases when restoration is unsuccessful, so an application with high availability
requirements cannot rely on this mechanism alone. Redundancy is required.

To this end, Cloud Foundry supports the usual concept of availability zones and allows to assign each DEA to
a certain zone. Then, when multiple instances of an application are started, they are distributed evenly on the
available zones. If the platform includes two DEAs associated to different zones, and two instances of an
application are started, one instance is automatically placed in the first zone and the other instance in the
second zone. Cloud Foundry will also take care of load-balancing traffic between the two instances
automatically. Of course this requires that applications are designed for active-active replication and do not
make assumptions on exclusive access to a resource, such as the database, by a single instance. Furthermore,
for complete redundancy, application owners must verify that not only application instances, but also their
data and the services they depend on are highly available. In the context of the SCP platform, if applications
store all of their data into a supported database service, data redundancy is granted by the SCP Database
Layer.

D2.2.2 – Storm Clouds Platform Architectural Design Version 1.0

© Storm Clouds 2015 Page 33 of 52

4 Database Layer

4.1 Concept

Generally speaking, applications use a database for storing persistent data and the SCP Database Layer
provides capabilities for supporting this feature.

In principle, any application could run its own database instance and, if necessary, the SCP architecture
supports such a scenario. As a matter of fact, an application could be deployed on a single virtual machine
that hosts both the application (e.g. the web front end) and the database engine:

Figure 4-1 - Application Database - Simplistic Scenario

The scenario described above is applicable to very simple use cases where high availability and load
balancing features are not strictly required, for instance for development and testing purposes.

In a more complex scenario, the application could be deployed using multiple VMs: some of them hosting web
front-end instances (in a load balancing configuration), others hosting the database engine (in a high
availability configuration).

Figure 4-2 – Application Database – Complex Scenario

It’s worth noticing that, in order to really address high availability issues, some VMs shall be deployed on
different nodes: for instance the VMs hosting the database copies must run on different machines.

The scenarios described above are fully supported by SCP and can be implemented using IaaS capabilities
only. In such cases, it is cloud user’s responsibility to design the application deployment architecture that is
implemented using the building blocks made available by the IaaS Layer. For instance, for implementing a
two tier application, the cloud user needs to prepare the VMs for the application tier and the VMs for the
database tier. In addition, if high availability is required, the cloud user needs to configure the VMs with the
database tier in a high available, maybe clustered, architecture.

SCP architecture implements a specific module, the Database Layer, providing database capabilities and – at
the same time – addressing high availability and load balancing issues. In this perspective, the Database
Layer alleviates the cloud user’s task because s/he can focus on the application development and adaptation
without taking care of resolving some deployment issues.

Version 1.0 D2.2.2 – Storm Clouds Platform Architectural Design

Page 34 of 52 © Storm Clouds 2015

4.2 Logical View

As reported in the overall architecture (see Figure 2-3 - Storm Clouds Platform - Overall Architecture), the
Database Layer can be both used by applications running in the IaaS or in the PaaS.

The Database Layer supplies two database engines: MySQL [7], available under GPL V2 license, and
PostgreSQL, available under PostgreSQL License (similar to BSD and MIT license [55]).

From the implementation point of view, the Database Layer is designed as a set pre-packaged virtual
machine images with an installation and configuration of the database engine. They are activated as virtual
machines in the SCP taking advantage of services of the IaaS Layer.

This kind of solution enables different usage models:

 exclusive: a database instance is activated for a single application;

 shared: a database instance can be used by different applications, provided that they use different
database schemes.

The following picture summarizes the concept:

Figure 4-3 - Database Instance Usage Models

The picture shows three applications with two Web Front End nodes each. Application 1 and Application 2
share a single database instance while Application 3 uses a database instance in exclusive mode.

4.3 Deployment View

This section describes two high availability deployment models for database layer. The first (Active-Passive
Cluster) is applicable to both MySQL and PostgreSQL; the other (MySQL Cluster with Galera) is applicable to
MySQL only.

Active-Passive Cluster deployment is suitable for moderate size applications and is sufficient for covering the
scope of the project; on the other hand, it is useful to investigate how to put in place more complex solutions
(at least for one of the two supported database engines) in order to illustrate the reasons for implementing,
and the related problems and solutions.

D2.2.2 – Storm Clouds Platform Architectural Design Version 1.0

© Storm Clouds 2015 Page 35 of 52

PostgreSQL supports several more complex cluster topologies that are not described here; for more
information see [56].

4.3.1 Active-Passive Cluster

MySQL and PostgreSQL support the active-passive cluster configuration described in Appendix A – Active-
Passive Cluster on Linux Platform.

In both cases, Distributed Replicated Block Device (DRDB®) takes care of replicating the virtual disk hosting
the database data; consequently, both the nodes in the cluster have a coherent and up-to-date copy of the
database at any time.

For the sake of clarity, Figure 4-4 - MySQL Active-Passive Cluster illustrates the active-passive cluster
configuration for MySQL:

Figure 4-4 - MySQL Active-Passive Cluster

MySQL boxes in blue represent the installation of MySQL software components. A similar configuration is
valid for PostgreSQL where PostgresSQL software packages substitute MySQL packages.

4.3.2 MySQL Cluster with Galera

While active-passive clusters are a proven technology that can be applied to any application to provide high
availability, they also have one major drawback, since the passive node is kept idle all the time thus wasting
the resources allocated to it. In order to achieve optimal resource usage, all nodes in the cluster should be
active at the same time, so that the workload can be distributed among them. However, this requires that the
application is designed to support multiple instances, which implies dealing with issues such as concurrent
access to shared resources.

Considering relational databases, replication solutions with multiple active nodes can be divided in two
categories: master-slave and multi-master.

Master-slave replication has been traditionally offered both by MySQL and PostgreSQL and is based on a
setup in which only one node, called master, accepts both reads and writes, while the other nodes, called
slaves, only accept reads. This avoids any write conflict between the nodes, since all transactions happen on
the master, and does not harm performance since the propagation of changes to the slaves can be done
asynchronously without blocking the master. This relatively simple solution allows to distribute read operations
across the nodes, but not writes, so it is adequate for read-oriented workloads but does not scale well when
the percentage of writes increases. Furthermore, since replication is asynchronous, there is some delay
between the commit on the master and the propagation of changes to the slaves. Queries executed on slaves

Version 1.0 D2.2.2 – Storm Clouds Platform Architectural Design

Page 36 of 52 © Storm Clouds 2015

within this delay may read old data and if the master crashes, slaves may lose the very latest updates.
Furthermore, procedures for promoting a slave to master in case the previous master crashes are often
complex and require manual intervention. So while this kind of replication offers some advantages with
respect to a single node deployment, it is not ideal for all cases.

Multi-master replication aims at solving the problems of master-slave by allowing all nodes to be master and
receive both reads and writes. Of course, this requires handling the synchronization of writes between nodes
without conflicts that may corrupt data. Traditional solutions for distributed transactions, such as two-phase
commit and distributed locking, are effective in guaranteeing data integrity but often bring considerable
performance penalties. However recent years have seen growing popularity for a multi-master replication
solution for MySQL, called Galera [57] that provides virtually synchronous replication among multiple master
nodes.

Galera defines a replication API, called Write-Set Replication (wsrep) API, and a replication library that
implements it. The wsrep API also requires support in the DBMS so that the appropriate API methods are
invoked when required. To this end, Galera provides a patched version of MySQL with the required changes.
Furthermore, support for Galera has been integrated into MySQL derivatives such as MariaDB [58] and
Percona XtraDB [59].

The reason why the approach adopted by Galera is called virtually synchronous is that changes are
propagated to all nodes synchronously on commit, but then each node stores them in a local cache and
applies them asynchronously, so that the delay on the originating node is minimized. Specifically, the
algorithm used is called Certification Based Replication [60] and works as follows. Every transaction is
executed locally on a single node, using optimistic locking, up to the commit operation. Upon commit, the node
creates a write-set that includes all changes made by the transaction and the primary keys of the rows
involved. This write-set is then propagated to the cluster, which assigns it a transaction ID that includes a
unique globally ordered sequence number. Nodes store write-sets in a cache and process them based on the
sequence number, so that all transactions are executed in the same order on all nodes, producing the same
final result. In order to determine whether two transactions are in conflict, their write-sets are compared and if
the primary keys modified by a transaction overlap with a previous transaction, and the sequence number of
the second transaction is such that it may have not seen the effects of the first one, the second transaction is
aborted. Otherwise if there are no conflicts the transaction is committed.

The algorithm guarantees that all nodes reach the same commit or abort decision on all transactions and
therefore write-sets can be processed independently and asynchronously. This brings a large performance
improvement with respect to two-phase commit, since the only coordination required among the nodes for
each transaction is the propagation of the write-set and assignment of the transaction ID. From that point on,
all nodes process changes independently without needing to wait for confirmations from the others to conclude
the operation.

In addition to enabling multi-master replication with limited performance penalties, Galera also implements
automatic management of cluster membership, removing the need for manual procedures to add or remove
nodes from the cluster. When a new node joins a cluster, it is automatically updated to the latest version of
data. Note that since replication is only virtually synchronous, it is possible for a client to read data from a
node that has not yet processed the latest changes already committed by another node, thus getting stale
results. In case this is not admissible, it is possible to configure Galera to delay queries on a node until all
pending write-sets have been applied, of course taking a read performance penalty for this.

D2.2.2 – Storm Clouds Platform Architectural Design Version 1.0

© Storm Clouds 2015 Page 37 of 52

With regard to how Galera replication for MySQL can be implemented in the SCP platform, Figure 4-5
shows the architecture of the cluster.

MySQL Cluster

LB Cluster
HAProxy 1

MySQL Node 1

MySQL Server

Galera Library

Quorum Node

Galera Arbitrator

Availability Zone 1

MySQL Node 2

MySQL Server

Galera Library

Availability Zone 2 Availability Zone 3

HAProxy 2 Quorum Node

Figure 4-5 – MySQL cluster

As already discussed, the cluster needs at least three nodes in different availability zones to avoid split-brain
problems, but in order to reduce costs, in our architecture only two nodes are actually running MySQL. The
third node requires limited resources because it only runs the Galera Arbitrator daemon so that a quorum can
be reached when one of the other nodes fails. Note that contrary to an active-passive solution, a load
balancer must be put in front of the cluster so that queries can be distributed among the first two nodes. Being
a critical component, the load balancer must be protected by an active-passive cluster itself.

Version 1.0 D2.2.2 – Storm Clouds Platform Architectural Design

Page 38 of 52 © Storm Clouds 2015

5 Management Layer
In SCP architecture, the management layer mainly implements monitoring functions aimed to verify the
availability and the performances of the infrastructure hosting cloud services and applications. It is designed
for verifying the working conditions of the servers hosting the cloud but also for monitoring virtual resources
(i.e. virtual machines) used implementing advanced cloud services, like PaaS components and DB engines of
the database layer. At the same time, monitoring functions can be used by cloud service users (i.e. application
provider and application creators) for verifying the working conditions of the applications hosted by the IaaS
Layer of the SCP.

5.1 Concept

Monitoring consists in the systematic collection and analysis of data regarding the components implementing
services. The monitoring tools verify that the monitored entities are working as expected and, if this is not the
case, notify the event. Corrective actions can be taken in order to temporary or permanently mitigate or fix
the problem. Corrective actions range from simply restarting a software package that has failed to provision
new devices when the physical infrastructure is not sufficient to support the computational workload. In some
cases, actions can be automated in order to minimize the outage/low performance time interval.

Monitoring is essential for capacity planning; the set of techniques for estimating the resources for supporting
the future estimated computational workload.

The following paragraphs briefly introduce the main aspects of monitoring.

Data Gathering

The data items collected for monitoring purposes are very diverse in nature and strongly depend on the entity
that is being monitored. In case of physical or virtual servers, some measures (e.g. CPU idle time, CPU steal
time, interrupts per seconds, context switches per seconds, number of processes, etc.) provide information on
the infrastructure resource usage. When the item to monitor is a software package, like a MySQL instance, the
data items are very different being daemons' status, queries per second, bytes received per second, etc. Data
are collected via network connections between the system being monitored and the monitoring platform.
Specific network protocols (like Simple Network Management Protocol (SNMP) [61]), and/or interfaces (like
Intelligent Platform Management Interface (IPMI) [62] or Java Management Extensions (JMX) [63]) have been
standardized for collecting monitoring data but, in some cases, data must be gathered using alternative and
no-standard methods that depend on the monitored elements. For example, a web application could be
monitored by retrieving a web page, via HTTP protocol. A (virtual) server could be queried by submitting
command lines via a Secure Shell (SSH)[64] connection. A monitoring platform shall support different data
items and different data collection methods and must provide the users with the ability to define custom data
items as well as custom data gathering methods, if needed.

When evaluating a monitoring solution, an important aspect to consider is how data collection is implemented.
In some cases, a piece of software part of the monitoring solution called agent is directly deployed on the
(virtual) machine that is being monitored. The agent collects data locally and periodically and/or on-event
basis transmits data to the centralized monitoring station. In different scenarios, agent-less monitoring
solutions collect data either analysing the network traffic originated by the machines under monitoring or by
periodically 'interrogating' the machines by 'proactively querying' data that are provided by some piece of
software that is already installed on it by default. For example, the monitoring station can contact the
monitored machine using SNMP (SNMP responders are natively supported by most of the operating systems).
In a different scenario the monitoring station can automatically open a SSH connection, submit shell commands
for retrieving data like CPU/Memory/Disk usage, and use the command output for gathering monitoring
information. Yet in other cases information is retrieved by directly querying an application running on the
machine. There are pros-and-cons related to agent-based and agent-less monitoring solutions and usually the
solution to put in place really depends on the specific problem at hand; as far as the SCP solution is
concerned, the monitoring solution must support a mixed approach that combines agent-less and agent-based
data collection techniques.

Historical Data Management

Monitoring solutions collect data in a centralized database for enabling analysis and reporting functions.
Theoretically, all the samples of monitoring data should be kept in the historical database in order to have full
information for any present or future analysis. Practically speaking, the decision on how many data to
preserve should be a compromise between the cost of storing data and the benefits deriving from any
present or future analysis on those data.

D2.2.2 – Storm Clouds Platform Architectural Design Version 1.0

© Storm Clouds 2015 Page 39 of 52

A good monitoring solution should permit to indicate, data item per data item, how many data samples to
keep in the historical database and for how long. In some cases, instead of keeping samples of data items, it
is useful to keep only some 'derived values' like minimum, maximum, and average values in a period of time.

Information Representation

Monitoring IT services requires the management of large amounts of information making it difficult to navigate
the data and interpret the results. For this reason, monitoring tools implement several ways for visualizing
data that can be shown in many forms (e.g. tabular, graphical, hierarchical, etc). The visualization can regard
static properties of the system(s) under monitoring as well as the data obtained by the observation of
dynamic parameters.

For example, a graph can show a map with the (virtual) servers used for implementing a service along with
the network connections among them (static properties of the system); the servers are coloured in green or red
depending on the current working conditions (dynamic property):

Figure 5-1 - Monitoring Data Representation - Map Example

Version 1.0 D2.2.2 – Storm Clouds Platform Architectural Design

Page 40 of 52 © Storm Clouds 2015

Another example of visualization shows some dynamic parameters of a single server on a time scale:

Figure 5-2 - - Monitoring Data Representation - Dynamic Parameter Example

A monitoring system shall support the creation of screens that are composed of several data visualizations and
allow the users to define how to navigate screens. For example, one could have a screen, similar to the map
shown in Figure 5-1, showing the overall status of the devices used for implementing a service. From that map,
by clicking on the icon representing a server, it would be useful to 'jump' in a screen where some parameters
related to that server are shown in details (with graphs similar to what shown in Figure 5-2).

Problem Detection & Resolution

When a problem occurs with a service, actions are to be taken in order to either fix the problem or mitigate
the effects; this might require the manual intervention of qualified staff and/or the execution of automatic
procedures.

Monitoring solutions detect problems by using the values of monitored data items. Set of data items -
collectively representing the status of a service – are used to define checks that the monitoring software
continuously performs for finding out anomalies. On fault detection, monitoring tools send messages to human
being (e.g. IT operators) and/or automatically perform actions with the objective of restoring normal (or, at
least, 'acceptable') operating conditions Monitoring tools send messages to operators using different media
like e-mail, Instant Messaging (IM), SMS, etc, and can run programs (for example scripts) that automatically
perform operations.

5.2 Logical View

The monitoring platform selected for SCP is Zabbix [9].

Zabbix is a tool, available under GNU General Public License (GPL) version 2 [65], for monitoring the
availability and performance of IT infrastructure components. The official Zabbix documentation [66] provides
more information on the supported platforms and the required/supported software products (e.g. database
engines).

D2.2.2 – Storm Clouds Platform Architectural Design Version 1.0

© Storm Clouds 2015 Page 41 of 52

The figure below illustrates the Zabbix's logical architecture:

Figure 5-3 - Zabbix Logical Architecture

Zabbix is composed of the following major software modules.

Name Description

Server The server is the monitoring engine of the solution and performs the polling and trapping of
monitored data. It calculates monitoring conditions and sends notifications to users.
Zabbix server runs under several operating systems like Linux, Solaris, AIX, HP-UX, Mac OS
X, etc. For the SCP architecture, the selected operating system is Ubuntu.

Database The database is the central repository in which all configuration, statistical and operational
data is stored. It is used by the server and the web frontend to interact. The database runs
under several DB engines like MySQL, Oracle, PostgreSQL, SQLite and IBM DB2.
For the SCP architecture, the selected DB engine is MySQL.

Web Frontend It is a web application implementing the Graphical User Interface (GUI) used for
configuring the monitoring information as well as for displaying the monitored data.
It is implemented as a PHP application running under Apache HTTP server.

Proxy It is an optional component that collects monitoring data from one or more monitored
devices and send the information to the server. Working on behalf of the server, it locally
buffers all the collected data that are eventually transferred to the server at a later stage.
Proxy is optional, but may be used for distribute the load of a single server because if
only proxies collect data, processing on the server becomes less resource consuming. Each
deployed proxy requires a separate database installation.

Java Gateway It is an optional daemon, written in Java, using the JMX management API to remotely query
applications supporting such a standard

Agent Agent is deployed on a monitoring target for monitoring local resources and/or
applications (hard drives, memory, processor statistics etc).
Zabbix agents are available for the following platforms: Linux; IBM AIX; FreeBSD;
NetBSD; OpenBSD; HP-UX, Mac OS X; Solaris: 9, 10, 11; Windows: 2000, Server 2003,
XP, Vista, Server 2008, 7

Table 5-1 - Zabbix Modules

Version 1.0 D2.2.2 – Storm Clouds Platform Architectural Design

Page 42 of 52 © Storm Clouds 2015

The modules depicted in green are hosted on dedicated servers directly managed by the owner of
infrastructure (e.g. the cloud administrator). Agents, depicted in red, are deployed on the monitored servers.
For more information on deployment options, see section 5.3.

Zabbix is based on the configurations created by users with administrator role. It connects to remote elements
for gathering data regarding machine and/or service status like performance indicators, availability, usage
quotas, file system status and so on. The user can define custom indicators via the configuration interface.

In order to allow Zabbix to retrieve data, remote hosts run an agent, a software module that enables the
communication between the Zabbix server and the monitored clients.

The collected data can be accessed and visualized from the web interface, as raw values or can be
represented as graphs. Zabbix also allows the configuration of custom user-level dashboard with personal
areas, where users can set references to specific graphs and data sets.

With Zabbix, it is possible to define triggers; special conditions which require specific handling. When a
trigger fires, Zabbix perform actions ranging from notifying IT personnel about the malfunctioning or
unavailability of some systems or services, to performing commands on the monitored systems affected by the
problem. Notifications and remote command executions can be arranged in complex scenarios named
escalations. An escalation is build-up of steps and each step can perform actions like sending messages
and/or executing commands. Escalations implement problem resolution workflows [67].

5.3 Deployment View

Every single Zabbix's software module shown in Figure 5-3 could be deployed on a dedicated machine but
the deployment suggested for the SCP architecture is a compromise that minimizes the number of the required
servers. The proposed solution implements high availability.

The following picture shows the deployment for the SCP platform:

Figure 5-4 - Zabbix Deployment Architecture

The nodes in the deployment architecture are:

 ZabbixServer1 (active) and ZabbixServer2 (stand-by): they both host all the centralized functions
(Server, Web Frontend and Database engine);

 ZabbixProxy (optional): it hosts Proxy as well as a Database engine instance, as required by
Zabbix deployment;

 ZabbixAgent: a copoy of this component is installed on any monitored server.

D2.2.2 – Storm Clouds Platform Architectural Design Version 1.0

© Storm Clouds 2015 Page 43 of 52

ZabbixServer1 and ZabbixServer2 are configured as an Active/Standby Linux cluster, fully described in
section Appendix A – Active-Passive Cluster on Linux Platform.

ZabbixProxy and ZabbixAgent are both configured for communicating either with ZabbixServer1 or –
alternatively – with ZabbixServer2. This is possible because Zabbix proxy and Zabbix agent natively support
a list of servers to communicate with; when a server is not available, they try to communicate with the server
next in the list. This behaviour is implemented for supporting high availability configurations of the Zabbix
server as described here.

Version 1.0 D2.2.2 – Storm Clouds Platform Architectural Design

Page 44 of 52 © Storm Clouds 2015

6 Summary and Conclusions
This document has described the Storm Clouds Platform (SCP) architecture. SCP is the cloud infrastructure
designed for hosting the applications selected by the STORM CLOUDS consortium for experimenting the
migration of digital services to a cloud-computing paradigm. It is composed of layers each one implementing
a set of highly related functions and services. Infrastructure as a Service Layer provides basic computational
objects, Platform as a Service Layer is specifically designed for hosting web-based applications, Database
Layer implements services for creating, managing and using databases; Management Layer provides
functions for controlling, monitoring and administering the whole platform as well as the applications running
on top of it.

At the time of writing, two instances of the platform are available: one at Hewlett Packard's premises, the
other hosted at EnterTheCloud (http://www.enterthecloud.it/), a public cloud-computing operator based in
Italy. The project participants use the HP's SCP (SCP@HPC) instance for testing both the platform itself (the
components and their interoperability) and the 'cloudification process' (the activities required for porting the
selected applications to cloud). SCP@HP is a private cloud where cloud infrastructure is provisioned for
exclusive use by a single organization; in fact, only the STORM CLOUDS project partners access SCP@HP
through Virtual Private Network (VPN) connections. They use the implemented services, in a self-service
fashion, for cloudifying the application services. SCP@HP cloud services as well as the hosted applications
are not reachable from the public Internet not permitting end-users (i.e. citizens and public servants) to access
the cloudified services. This is where SCP hosted at EnterTheCloud (SCP@Enter) comes into play. SCP@Enter is
hosted on a public cloud infrastructure and is functionally equivalent to SCP@HP. Once the cloudifiction
process is finished, the cloudified application is merely moved from SCP@HP to SCP@Enter without any
major modification.

This exercise has demonstrated that the platform supports both public and private deployment models
allowing the project partners (in particular PAs) to decide how to manage their applications once the project
terminates. In some cases, they could decide to keep them on a public cloud operator: EnterTheCloud (the
operator selected for the project) is an option but other cloud operators providing similar OpenStack-based
solutions are available in EU territory or outside3. In other cases, PAs may be willing to deploy services on
equipment at their own sites, maybe because of the kind of data managed by the applications that require
particular security measures. In such a case, SCP design supports the private (on-site) deployment model and
partners can use that for implementing their own private SCP instance.

As reported in the document, all the software components used for the SCP implementation is backed by an
Open-source software (OSS) license. This aspect, in addition to being an explicit objective of the project ("The
project partners declare strong commitment to an ‘open’ approach [...omitted...] releasing the developed
technologies under OSS" [3]), avoids the vendor lock-in phenomena where "a customer depends on a vendor for
products and services, unable to use another vendor without substantial switching costs" [68].

The architecture presented here is a baseline for future extensions and modifications with the objective of
improving the way some functions are implemented or adding new functions not currently available.

Today SCP implements some functions in a way that cloud users shall take care of some 'low-level' details. A
more advanced cloud platform could hide them providing similar functionality in a more easy-tu-use and 'as-
a-Service' oriented form. As an example, if a cloud user needs load balancing for her web applications, the
suggested solution presented in this document consists of a cluster of VMs equipped with HAProxy and
configured in an appropriate way (see Appendix A – Active-Passive Cluster on Linux Platform). The user is
responsible of creating the VMs, installing the software packages (cluster software and HAProxy), configuring
the software, etc. She could save some effort by preparing pre-packaged VM images and automating the
activation and the configuration but still more of the effort is on her shoulders. The OpenStack community is
currently working on a Load balancing as a Service (LBaaS) solution [69] where load balancing functions are
activated with very little effort and without the preparation of VMs. SCP does not mention this solution
because the community still consider that an experimental work and not all the OpenStack-based public cloud
operators provide that. A newer version of the SCP could integrate OpenStack LBaaS.

Similar arguments apply to database functions. Trove "is Database as a Service designed to run entirely on
OpenStack, with the goal of allowing cloud users to quickly and easily utilize the features of a relational or non-
relational database without the burden of handling complex administrative task" [70]. The functions presented in

3 See http://www.openstack.org/marketplace/public-clouds

http://www.enterthecloud.it/
http://www.openstack.org/marketplace/public-clouds

D2.2.2 – Storm Clouds Platform Architectural Design Version 1.0

© Storm Clouds 2015 Page 45 of 52

section Error! Reference source not found. (Error! Reference source not found.) could be largely delivered
 Trove-based solution but, at the time writing, Trove project is in incubation status and cannot be considered a
mature and stable solution. In addition, some OpenStack-based cloud providers do not deliver database-as-
a-services on Trove.

Finally, Monasca "is an open-source multi-tenant, highly scalable, performant, fault-tolerant monitoring-as-a-
service solution that integrates with OpenStack" [71] that could cover the functions described in section 5.
Monasca is a recent OpenStack project and, at time of writing, has not reached the maturity level required
for STORM CLOUDS project.

In the future, the solutions listed above could provide functions similar to the ones the current architecture
implements; the architecture should be modified and some components be substituted with different solutions
delivering similar or even more advanced features.

The exercise of implementing the SCP and porting applications to cloud suggests directions for realizing new
functions.

When using SCP IaaS objects, many activities consist in the installation and configuration of software
packages on virtual machines. Cloud users can perform them manually but, very often, the task is quite
complex. As an example, an application of moderate complexity can require several virtual machines each
one equipped with a certain set of software packages dependent on the functions the virtual machine
implements. For example, a typical web-based application can require a three-layer deployment: the first
layer implements load balancing; the second layer hosts the web front end (i.e. HTTP server) and the third
layer provides the database. Each layer is composed of a VM cluster, for high-availability. The installation of
such kind of applications results in a tedious and error-prone activity worsened by the need of periodically
update software packages, maybe for installing new versions, security patches, etc.

IT Automation is the answer for this kind of problems. Actually SCP, in the current state, already implements
some automation functions; OpenStack Heat (briefly described in section 2.2.1) permits the cloud user to
describe all the IaaS objects she needs for an application in a script – called stack – and to "control the e
entire lifecycle of infrastructure and applications within OpenStack clouds" [72]. In this perspective, the activation
and deactivation of the IaaS objects can be simply obtained by 'submitting a stack' to Heat that takes care of
automatically creating/destroying the listed IaaS objects (e.g VMs, Virtual Disks, etc). On the other hand, one
can hardly use Heat for installing and configuring software packages on VMs and configuration management
in broader sense4 is certainly out of Heat's scope.

Puppet [73] is an open-source configuration management system that can fill the gap. It allows the definition
of the 'state' of IT infrastructure and enforces the correct state by automatically installing, reinstalling, and
configuring software packages on pieces of infrastructure (e.g. VMs). In this perspective, Puppet automates
the deployment of any VM running on the IaaS Layer either hosting pieces of the architecture (e.g. the VMs
used for PaaS) or an application service not deployed in the PaaS.

Automation is also a prerequisite for enabling advanced features such as auto-scaling, meaning that
application instances are automatically added or removed based on the current workload. For applications
deployed directly on the IaaS, this could be done using auto-scaling groups in Heat, although this requires
support from the cloud provider. On the other hand current releases of Cloud Foundry include manual scaling
commands but do not support auto-scaling, which could be implemented by adding triggers in the monitoring
infrastructure so that the appropriate scaling action is taken based on metrics such CPU load or response time.

4 "Configuration management is the process of standardizing resource configurations and enforcing their state across IT
infrastructure in an automated yet agile manner. Configuration management is critical to the success of other IT processes,
including provisioning, change management, release management, patch management, compliance and security" (see
http://puppetlabs.com/solutions/configuration-management).

http://puppetlabs.com/solutions/configuration-management

Version 1.0 D2.2.2 – Storm Clouds Platform Architectural Design

Page 46 of 52 © Storm Clouds 2015

Appendix A – Active-Passive Cluster on Linux Platform
This appendix describes how to implement a two-node active-passive cluster under Linux.

A high availability cluster is a way of deploying a software solution in order to increase the uptime of the
implemented service. This feature can be obtained in several ways that often depend on how the software
packages are implemented; generally speaking high availability is implemented using a group of machines,
collectively called a high availability cluster, where the workload of failed machine is automatically and
quickly taken over by a different machine in the cluster. Each machine in the cluster is a node.

One of the main characteristics of a high availability cluster is the topology that defines how many nodes are
used and/or how the work is distributed among them. In an active-passive topology, the cluster is composed
of two nodes but, at any time, only one - called the active node - supports the whole workload while the
other is inactive. In case the active node fails, the inactive one takes over and changes its role in the cluster
from passive to active5.

The implementation of an active-passive cluster requires that at any time the active node supplies all the
services and have access to a coherent and up-to-date set of data. The passive node is in a stand-by state
but, when the active node fails, the stand-by takes over by starting all the services and using the same set of
data previously used by the failing node.

A further classification of the active-passive high availability topology can be done considering how the two
nodes are provided with the same set of data. In an active-passive/share-data scenario they share a single
data source like, for example, a shared file system. In the active-passive/shared-nothing scenario, on the
other hand, each node keeps a 'private copy' of the data-set that is continuously kept in-synch with the copy
of the other node6.

This section describes how to implement an active-passive/shared-nothing solution, summarized by the
following picture:

Figure 0-1- Active-Passive/Shared-Nothing High Availabilty Cluster

5 The description of the other topologies is out of the scope of this document; interested reader can refer to [53]for a
description of their most relevant features.

6 Actually, because only the active node can really make modifications to the data set, (the services on the passive are
stopped or in stab-by state), the synchronization always flows from the active to the passive node.

D2.2.2 – Storm Clouds Platform Architectural Design Version 1.0

© Storm Clouds 2015 Page 47 of 52

The solution is implemented using three nodes: Node1 and Node2 hosts the services and alternatevely play
either the active or the passive role. QuorumNode, not described so far, needs some explanation.

The algorithms for implementing high availability assume that the nodes continously communicate each other
for 'deciding' if the active node is really providing the services. For example, the passive node continously
verifies if the active node is still 'alive' and, if this is not the case, must decide whether it must take over. A
problem arises when the active node is still alive but the passive one is not able to communicate with that,
maybe because of a communication link breakdown. In such a case, if the passive node would take over, then
we came up with a situation where both the nodes are alive and provide the services. In this situation, known
as split-brain situation [74], various inconsistent scenarios can arise. A common technique for avoiding this kind
of problems is to put in place voting algorithms where all the nodes in the cluster participate in the election of
the new active node, when the current active node seem to be unavailable. In order to have a unique 'winner',
it's fundamental to have an odd number of 'voters' and that's the reason for having the QuorumNode that
does not host any service but it's only equipped with the software components for being part of the cluster
(i.e. Pacemaker and Corosync) for implementing the communication and the voting algorithms7, as described
below.

The Service User shown in the picture can be either another node hosting different services or a device in the
hands of a human being. This really depends on the services deployed on the cluster nodes. For example, if
the service is a database engine (e.g. a MySQL database), the Service User can actually be application
software running on a server; on the other hand, if the service is a web application, the Service User
represents a device used by a person (e.g. a PC, a mobile phone or a tablet). Service User accesses the
clustered services using the Virtual IP address (VIP), a 'well-known' IP address that is always associated to the
currently active node. At different times, VIP is allocated either to Node1 or to Node2 and permits the
Service User to access the service 'transparently', without having any knowledge of the node that is currently
in active state. VIP management is in charge of the high availability solution (Pacemaker & Corosync) that
takes care of allocating the VIP to the active node and of reassigning it when the active node changes. Please
note that any server in the cluster is also provided with, at least, a Private IP address used for connecting for
administration tasks and for the communication among all the nodes in the cluster.

Pacemaker & Corosync pair implements the high availability clustering solution. Pacemaker [75], an open
software package available under e GPLv2+ license [76], starts and stops services and ensures that they are
running on exactly the active node in the cluster. Corosync [77], available on BSD open source license [78],
implements the underlying messaging infrastructure between the nodes and is used by Pacemaker for
implementing clustering features. Corosync handles the nodes membership within the cluster and informs
Pacemaker of any change in the cluster. Pacemaker integrates with the services to configure in high
availability using Resource Agents (RAs); scripts that implement a set of commands for starting, stopping,
monitoring, the software daemons of the services. There are over RAs for the most common software packages
(e.g. MySQL, PostgreSQL, Apache, iSCSITarget, etc.) and others can be implemented, if needed. As described
in Figure 0-1, the two components are deployed on all the nodes participating to the cluster, QuorumNode
included, and communicate for implementing HA clustering features.

Distributed Replicated Block Device (DRDB®) [79] is a distributed replicated storage system available for
Linux operating systems and available as open source software under GNU GPLv2 license [80]. In the HA
cluster shown above, it is a clustered service taking care of synchronizing data transparently to the
application. It works at block device level (i.e. at disk level) and keeps in synchronisation the file system(s)
residing on the Private Disks shown in Figure 0-1. At any time, the data in the two disks appear to be
identical and when a passive node is promoted to active, it takes over by using a consistent data set coherent
to the one hosted on the Private Disk of the active node that has just failed.

The high availability solution described here is used for the implementation of some components of the SCP
architecture (e.g. IaaS controller nodes, Zabbix Servers, etc.) but can also be used for implementing high
availability clusters of application services directly implemented on top of the IaaS layer. In such a case, the
nodes are substituted by virtual machines (VMs). In such a case, it is fundamental that each VM in the high
availability cluster runs on a different physical server. In fact, if two VMs run on a single physical server, the
cluster would fail in case the underlying physical machine stops working.

In order to avoid this problem, IaaS platforms – OpenStack included – implement mechanisms for specifying
that a certain VM (or set of VMs) do not have to run on the same pieces of infrastructure of another VM (or
set of VMs), like described in section 2.3.1.2.

7 The full description of voting algorithms is out of scope of this document.

Version 1.0 D2.2.2 – Storm Clouds Platform Architectural Design

Page 48 of 52 © Storm Clouds 2015

The following picture shows how to implement a high available load balancer service with the previously
described active-passive cluster solution:

Figure 0-2 - Load Balancing with HAProxy

The picture shows that the service hosted in the cluster is HAProxy [54], an open source solution providing load
balancing and proxying for TCP and HTTP-based applications.

D2.2.2 – Storm Clouds Platform Architectural Design Version 1.0

© Storm Clouds 2015 Page 49 of 52

References

[1] "Storm Clouds - Project Web Site," [Online]. Available: http://stormclouds.eu/. [Accessed July 2014].

[2] "Storm Clouds Project - European Commission Project Page," [Online]. Available:
http://ec.europa.eu/digital-agenda/en/storm-clouds-project-cloud-public-services. [Accessed July
2014].

[3] "Surfing Towards the Opportunity of Real Migration to CLOUD-based public Services," STORM CLOUDS
Consortium, November 2013.

[4] Consonni, Marco;Panuccio, Pasquale, "Storm Clouds Project: D 2.1 - Storm Clouds Platform –
Requirements and Specification," STORM CLOUDS Project, 2014.

[5] "OpenStack Project," [Online]. Available: http://openstack.org. [Accessed June 2014].

[6] "Cloud Foundry - Community Main Page," [Online]. Available: http://cloudfoundry.org/index.html.
[Accessed July 2014].

[7] "MySQL - Main Page," [Online]. Available: http://www.mysql.com/. [Accessed July 2014].

[8] "PostgreSQL - Main Page," [Online]. Available: http://www.postgresql.org/. [Accessed July 2014].

[9] "Zabbix - Main Page," [Online]. Available: https://www.zabbix.org/wiki/Main_Page. [Accessed July
2014].

[10] "Duplicity Main Page," [Online]. Available: http://duplicity.nongnu.org/. [Accessed Jan 2015].

[11] "Dnsmasq," [Online]. Available: http://www.thekelleys.org.uk/dnsmasq/doc.html. [Accessed July 2014].

[12] "OpenStack Cloud Administrator Guides," [Online]. Available: http://docs.openstack.org/admin-guide-
cloud/content/index.html. [Accessed July 2014].

[13] "django project page," [Online]. Available: https://www.djangoproject.com/. [Accessed July 2014].

[14] "Apache HTTP Server Project - Main Page," [Online]. Available: https://httpd.apache.org/. [Accessed
July 2014].

[15] "Representational state transfer - Wikipedia Page," [Online]. Available:
http://en.wikipedia.org/wiki/Representational_state_transfer. [Accessed July 2014].

[16] "OpeStack Documentation - Main Page," [Online]. Available: http://docs.openstack.org/. [Accessed July
2014].

[17] "OpenStack Hypervisor Support Matrix," [Online]. Available:
https://wiki.openstack.org/wiki/HypervisorSupportMatrix. [Accessed July 2014].

[18] "Kernel Based Virtual Machine - Main Page," [Online]. Available: http://www.linux-
kvm.org/page/Main_Page. [Accessed July 2014].

[19] "Kernel-based Virtual Machine - Wikipedia Page," [Online]. Available:
http://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine#Licensing. [Accessed July 2014].

[20] "OpenStack Cinder Support Mitrix," [Online]. Available:
https://wiki.openstack.org/wiki/CinderSupportMatrix. [Accessed July 2014].

[21] "tgt project - Linux SCSI target framework," [Online]. Available: http://stgt.sourceforge.net/. [Accessed
July 2014].

[22] "RFC 3720 - Internet Small Computer Systems Interface (iSCSI)," [Online]. Available:
http://tools.ietf.org/html/rfc3720. [Accessed July 2014].

[23] "LVM2 Resource Page," [Online]. Available: https://sourceware.org/lvm2/. [Accessed July 2014].

Version 1.0 D2.2.2 – Storm Clouds Platform Architectural Design

Page 50 of 52 © Storm Clouds 2015

[24] "tgtd Manual Pages," [Online]. Available: http://stgt.sourceforge.net/manpages/tgtd.8.html. [Accessed
July 2014].

[25] "Logical Volume Manager (Linux) - Wikipedia Page," [Online]. Available:
http://en.wikipedia.org/wiki/Logical_Volume_Manager_%28Linux%29. [Accessed July 2014].

[26] "OpenStack Cloud Administrator Guide - Networking Plug-In Architecture," [Online]. Available:
http://docs.openstack.org/admin-guide-cloud/content/section_plugin-arch.html.

[27] "IPTABLES - Linux Manual Page," [Online]. Available: http://ipset.netfilter.org/iptables.man.html.
[Accessed July 2014].

[28] "Open vSwitch - An Open Virtual Switch," [Online]. Available: http://openvswitch.org/. [Accessed July
2014].

[29] "iptables - Wikipedia Page," [Online]. Available: http://en.wikipedia.org/wiki/Iptables. [Accessed July
2014].

[30] "Open vSwitch - Wikipedia Page," [Online]. Available: http://en.wikipedia.org/wiki/Open_vSwitch.
[Accessed July 2014].

[31] "iptables - free code download page," [Online]. Available: http://freecode.com/projects/iptables/.
[Accessed July 2014].

[32] "OpenStack Installation Guide for Ubuntu 12.04/14.04 (LTS)," [Online]. Available:
http://docs.openstack.org/icehouse/install-guide/install/apt/content/. [Accessed July 2014].

[33] "OpenStack High Availability Guide," [Online]. Available: http://docs.openstack.org/high-availability-
guide/content/index.html. [Accessed July 2014].

[34] "GnuPG Main Page," [Online]. Available: https://www.gnupg.org/index.html. [Accessed Jan 2015].

[35] "OPenPGP Alliance Main Page," [Online]. Available: http://www.openpgp.org/. [Accessed Jan 2015].

[36] "rsync Main Page," [Online]. Available: http://rsync.samba.org/. [Accessed Jan 2015].

[37] "mysqldump description," [Online]. Available:
http://dev.mysql.com/doc/refman/5.1/en/mysqldump.html. [Accessed Jan 2015].

[38] "Platform as a Service - Wikipedia Page," [Online]. Available:
http://en.wikipedia.org/wiki/Platform_as_a_service. [Accessed July 2014].

[39] "VMware Delivers Cloud Foundry, The Industry’s First Open PaaS," VMware, [Online]. Available:
http://www.vmware.com/company/news/releases/cloud-foundry-apr2011.html. [Accessed July 2014].

[40] "Pivotal Moves to Establish Open Governance Model for Cloud Foundry," [Online]. Available:
https://www.gopivotal.com/platform-as-a-service/cloud-foundry-foundation. [Accessed July 2014].

[41] "Cloud Foundry - Foundation Page," [Online]. Available: http://www.cloudfoundry.org/cloud-foundry-
foundation-launch.html. [Accessed Jan 2015].

[42] "Cloud Foundry - Architecture," [Online]. Available: http://docs.cloudfoundry.org/concepts/architecture.
[Accessed Jan 2015].

[43] "Operating system–level virtualization," [Online]. Available:
http://en.wikipedia.org/wiki/Operating_system-level_virtualization. [Accessed July 2014].

[44] "Warder - Description Page," [Online]. Available:
http://docs.cloudfoundry.org/concepts/architecture/warden.html. [Accessed July 2014].

[45] "Control Groups - Description Page," [Online]. Available:
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt. [Accessed July 2014].

[46] "Eclipse Project Web Site," [Online]. Available: http://www.eclipse.org/. [Accessed July 2014].

D2.2.2 – Storm Clouds Platform Architectural Design Version 1.0

© Storm Clouds 2015 Page 51 of 52

[47] "Maven Project Web Siste," [Online]. Available: http://maven.apache.org/). [Accessed July 2014].

[48] "Gradle Project Web Site," [Online]. Available: http://www.gradle.org/). [Accessed July 2014].

[49] "Cloud Foundry - BOSH Page," [Online]. Available: http://docs.cloudfoundry.org/bosh/. [Accessed Jan
2015].

[50] "YAML Main Page," [Online]. Available: http://www.yaml.org/. [Accessed Jan 2015].

[51] "Monit - Main Page," [Online]. Available: http://mmonit.com/monit/. [Accessed Jan 2015].

[52] "CloudFoundry - Backup and disaster recovery," [Online]. Available: https://github.com/cloudfoundry-
community/cf-docs-contrib/wiki/Backup-and-disaster-recovery. [Accessed Jan 2015].

[53] "Cloud Foundry - High Availability," [Online]. Available: http://docs.cloudfoundry.org/concepts/high-
availability.html. [Accessed Jan 2015].

[54] "HAProxy - Main Page," [Online]. Available: http://www.haproxy.org/. [Accessed Jan 2015].

[55] "PostgreSQL License," [Online]. Available:
http://wiki.postgresql.org/wiki/FAQ#What_is_the_license_of_PostgreSQL.3F. [Accessed July 2014].

[56] "PostgreSQL - High Availability, Load Balancing, and Replication," [Online]. Available:
http://www.postgresql.org/docs/9.4/static/high-availability.html. [Accessed Jan 2015].

[57] "Galera Cluster - Main Page," [Online]. Available: http://galeracluster.com/. [Accessed Jan 2015].

[58] "MariaDB - Galera Cluster Page," [Online]. Available: https://mariadb.com/kb/en/mariadb/what-is-
mariadb-galera-cluster. [Accessed Jan 2015].

[59] "Percona XTRADB Cluster Page," [Online]. Available: http://www.percona.com/software/percona-
xtradb-cluster. [Accessed Jan 2015].

[60] "Galera Cluster - Certification-Based Replication," [Online]. Available:
http://galeracluster.com/documentation-webpages/certificationbasedreplication.html. [Accessed Jan
2015].

[61] "Simple Network Management Protocol - Wikipedia Page," [Online]. Available:
http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol]. [Accessed Jan 2014].

[62] "Intelligent Platform Management Interface - Wikipedia Page," [Online]. Available:
http://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface . [Accessed Jan 2015].

[63] "Java Management Extensions - Wikipedia Page," [Online]. Available:
http://en.wikipedia.org/wiki/Java_Management_Extensions . [Accessed Jan 2015].

[64] "Secure Shell - Wikipedia Page," [Online]. Available: http://en.wikipedia.org/wiki/Secure_Shell.
[Accessed Jan 2015].

[65] "Zabbix - License Page," [Online]. Available: http://www.zabbix.com/license.php. [Accessed Jan 2015].

[66] "Zabbix Manual - Requirements," [Online]. Available:
https://www.zabbix.com/documentation/3.0/manual/installation/requirements. [Accessed Jan 2015].

[67] "Zabbix Manual - Escalations," [Online]. Available:
https://www.zabbix.com/documentation/3.0/manual/config/notifications/action/escalations. [Accessed
Jan 2015].

[68] "Vendor Lock-In - Wikipedia Page," [Online]. Available: http://en.wikipedia.org/wiki/Vendor_lock-in.
[Accessed Jan 2015].

[69] "OpenStack - Neutron LBaaS Page," [Online]. Available:
https://wiki.openstack.org/wiki/Neutron/LBaaS. [Accessed Jan 2015].

[70] "OpenStack - Trove Page," [Online]. Available: https://wiki.openstack.org/wiki/Trove. [Accessed 2015

Version 1.0 D2.2.2 – Storm Clouds Platform Architectural Design

Page 52 of 52 © Storm Clouds 2015

2015].

[71] "Monasca - Main Page," [Online]. Available: https://wiki.openstack.org/wiki/Monasca. [Accessed Jan
2015].

[72] "OpenStack Heat - Wiki Page," [Online]. Available: https://wiki.openstack.org/wiki/Heat. [Accessed Jan
2015].

[73] "Puppet Open Source," [Online]. Available: http://puppetlabs.com/puppet/puppet-open-source.
[Accessed Jan 2015].

[74] "Split Brain (computer) - Wikipedia Page," [Online]. Available: http://en.wikipedia.org/wiki/Split-
brain_%28computing%29. [Accessed Jan 2015].

[75] "Pacemaker Home Page," [Online]. Available: http://clusterlabs.org/. [Accessed Jan 2015].

[76] "Pacemaker License Page," [Online]. Available: http://clusterlabs.org/wiki/License. [Accessed Jan 2015].

[77] "Corosync Main Page," [Online]. Available: http://corosync.github.io/corosync/. [Accessed Jan 2015].

[78] "Corosync License Page," [Online]. Available:
https://github.com/corosync/corosync/blob/master/LICENSE. [Accessed Jan 2015].

[79] "DRBD Main Page," [Online]. Available: http://drbd.linbit.com/. [Accessed Jan 2015].

[80] "DRBD License Page," [Online]. Available: http://drbd.linbit.com/home/drbd-is-gpled/. [Accessed Jan
2015].

[81] "Nagios - Main Page," [Online]. Available: http://www.nagios.org/. [Accessed July 2014].

[82] "STORM CLOUDS Consortium," [Online]. Available: http://stormclouds.eu/?page_id=25. [Accessed July
2014].

[83] "Pivotal Names Eight Additional Organizations that Intend to Join the Cloud Foundry Foundation,"
[Online]. Available: https://www.gopivotal.com/platform-as-a-service/press-release/cloud-foundry-
foundation. [Accessed July 2014].

[84] "High-availability cluster - Wikipedia page," [Online]. Available: http://en.wikipedia.org/wiki/High-
availability_cluster. [Accessed Jan 2015].

[85] "Cloud Foundry - BOSH Components Page," [Online]. Available:
http://docs.cloudfoundry.org/bosh/bosh-components.html. [Accessed Jan 2015].

