

Project Acronym: STORM CLOUDS

Grant Agreement number: 621089

Project Title: STORM CLOUDS – Surfing Towards the Opportunity of Real Migration to CLOUD-based public
Services

Legal Notice and Disclaimer

This work was partially funded by the European Commission within the 7th Framework Program in the context of the CIP
project STORM CLOUDS (Grant Agreement No. 621089). The views and conclusions contained here are those of the
authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed
or implied, of the STORM CLOUDS project or the European Commission. The European Commission is not liable for any
use that may be made of the information contained therein.

The Members of the STORMS CLOUDS Consortium make no warranty of any kind with regard to this document, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Members of the
STORMS CLOUDS Consortium shall not be held liable for errors contained herein or direct, indirect, special, incidental or
consequential damages in connection with the furnishing, performance, or use of this material.

© STORMS CLOUDS Consortium 2014

Deliverable D2.2.1

Storm Clouds Platform Architectural Design

Work Package: WP2

Version: 1.1

Date: 12/01/2015

Status: Project Coordinator Accepted

Dissemination Level: PUBLIC

Version 1.1 D2.2.1 – Storm Clouds Platform Architectural Design

Page 2 of 34 © Storm Clouds 2014

Authoring
Role Name Organisation

Edited by Marco Consonni Hewlett Packard Italiana

Author Marco Consonni Hewlett Packard Italiana

Author Andrea Milani Hewlett Packard Italiana

Reviewed by Alkiviadis Giannakoulias European Dynamics

Reviewed by Agustín González Quel Ariadna Servicios Informáticos

Version Control
Modified by Date Version Comments

M. Consonni 04/07/2014 0.1 First Draft

M. Consonni, A. Milani 18/07/2014 0.2 Ready for review

M. Consonni 30/07/2014 1.0 Ready for EUC review

Inmaculada Martín 12/01/2015 1.1 No content modification, new format adopted for
project deliverable documents.

D2.2.1 – Storm Clouds Platform Architectural Design Version 1.1

© Storm Clouds 2014 Page 3 of 34

Project Presentation
Surfing Towards the Opportunity of Real Migration to Cloud-based public Services (STORM CLOUDS) [1] is a
project partially funded by the European Commission within the 7th Framework Program in the context of the
Capital Improvement Plan (CIP) project (Grant Agreement No. 621089) [2].

The project has the objective of exploring the shift to a cloud-based paradigm for deploying services that
Public Authorities (PAs) currently provide using more traditional Information Technology (IT) deployment
models. In this context, the term "services" refers to applications, usually made available through Internet, that
citizens and/or public servants use for accomplishing some valuable task.

The project aims to define useful guidelines on how to implement the process of moving application to cloud
computing and is based on direct experimentation with pilot projects conducted in, at least, the cities
participating to the consortium.

STORM CLOUDS will also deliver a consolidated a portfolio of cloud-based services validated by citizens
and Public Authorities in different cities and, at the same time, general and interoperable enough to be
transferred and deployed in other European cities not taking part in the project. This portfolio will be mainly
created from applications and technologies delivered by other CIP Policy Support Program (CIP-PSP) and
Framework Program 7 (FP7) projects, as well as resulting from innovation efforts from Small and Medium
Enterprises (SMEs).

The project is lead by the following consortium:

Member Role/Responsibilities Short Name Country

Ariadna Servicios Informáticos, S.L. Co-ordinator ASI Spain

Hewlett Packard Italiana S.r.l. Participant HP Italy

EUROPEAN DYNAMICS Advanced Systems of
Telecommunications, Informatics and Telematics

Participant ED Greece

Research, Technology Development and Innovation,
S.L

Participant RTDI Spain

Aristotelio Panepistimio Thessaloniki Participant AUTH Greece

Alfamicro Sistemas de Computadores LDA Participant Alfamicro Portugal

Manchester City Council Participant Manchester United
Kingdom

Ayuntamiento de Valladolid Participant Valladolid Spain

City of Thessaloniki Participant Thessaloniki Greece

Câmara Municipal de Águeda Participant Águeda Portugal

For more information on the scope and objectives of the project, please refer to the Description of Work
(DOW) of the project [3].

Version 1.1 D2.2.1 – Storm Clouds Platform Architectural Design

Page 4 of 34 © Storm Clouds 2014

Executive Summary
Work Package 2 (WP2) of the Storm Clouds project is aimed at designing and implementing the reference
architecture for the Storm Clouds Platform (SCP), the cloud platform infrastructure for hosting application
services selected for being ported to cloud. SCP supplies computational resources that are allocated/de-
allocated on a on-demand basis following a “as-a-Service” cloud computing paradigm.

This document describes the SCP architecture providing the technical details for the implementation; it shows
the main modules, what functions they implement, how they interact and what are the software products
selected for the actual realization.

The architecture described here is used for realizing an actual implementation of the platform, made
available to the STORM CLOUDS consortium for deploying their applications during the project lifetime.
However, SCP architecture can also be used as a reference for implementing similar services on other
contexts. Some project participants (e.g. municipalities) might require that applications run in a different,
maybe “more controlled”, environment implemented in data centres on their premises. This might be preferred
and/or strictly required by security and privacy regulations applicable to the information managed by the
applications. In such a case, SCP design can be totally or partially reused for the implementation of a private
SCP instance.

The description of the architecture is mainly focussed on the software components used for the implementation;
the hardware components are intentionally not fully described assuming that the solution can be supported by
commodity hardware equipment. In addition, a selection of the hardware necessary for supporting a SCP
instance would require an in-depth analysis of the operational, security, financial and performance
requirements that are, at the time of writing, out of scope.

According to project objectives defined in the project Statement of Work document [3], “the project partners
declare strong commitment to an open approach, and this will be heavily considered when selecting concrete
services to deploy during the project and include in STORM CLOUDS portfolio”; in this perspective, SCP
architecture is based on software solutions and components backed by open software license.

SCP architecture is meant to address the requirements and specification described in a previous STORM
CLOUDS project deliverable titled “D 2.1 Storm Clouds Platform – Requirements and Specification”[4].

This document is organized in the following major sections.

Section 1 describes the SCP architecture showing a first-cut decomposition in layers that are detailed in the
subsequent sections.

Section 2 describes the software technologies used to implement basic computational resources like virtual
machines, virtual disks, virtual networks, etc.

Section 3 details the software technologies used to implement an operating environment for hosting web-
based applications.

Section 4 describes the software solutions implementing database services.

Section 5 shows the solutions used for implementing management and maintenance functions for the cloud
platform.

Section 6 draws a summary and conclusions.

The document is the first of a document series that will eventually result in the full definition of the SCP
architecture. In this first issue the objective is to define the basic services for enabling the porting of the
applications; some more advanced aspects regarding a “production ready environment” (e.g. high
availability issues, cloud platform management, monitoring, etc.) are partially addressed, only. They will be
fully investigated, described and addressed in the next document releases.

D2.2.1 – Storm Clouds Platform Architectural Design Version 1.1

© Storm Clouds 2014 Page 5 of 34

Table of Contents
Authoring.. 2
Version Control ... 2
Project Presentation ... 3
Executive Summary .. 4
Table of Contents ... 5
List of Figures .. 6
List of Tables ... 7
Abbreviations .. 8
1. Overall Architecture .. 10
2. Infrastructure as a Service Layer .. 11

2.1. Concept ... 11
2.2. Logical View ... 12

2.2.1. IaaS Platform ... 13
2.2.2. Virtualization Layer .. 17

2.2.2.1. Server Virtualization .. 17
2.2.2.2. Storage Virtualization ... 18
2.2.2.3. Network Virtualization ... 19

2.3. Deployment View .. 20
3. Platform as a Service Layer .. 22

3.1. Concept ... 22
3.2. Logical View ... 23
3.3. Deployment View .. 25

4. Database Layer ... 27
4.1. Concept ... 27
4.2. Logical View ... 28
4.3. Deployment View .. 28

5. Management Layer ... 29
5.1. Concept ... 29
5.2. Logical View ... 29
5.3. Deployment View .. 29

6. Summary and Conclusions .. 30
Appendix A – OpenStack Configuration File Example ... 31
References ... 32

Version 1.1 D2.2.1 – Storm Clouds Platform Architectural Design

Page 6 of 34 © Storm Clouds 2014

List of Figures
Figure 1-1 - Storm Clouds Platform - Overall Architecture .. 10
Figure 2-1 - Infrastructure as a Service - Conceptual View ... 11
Figure 2-2 - Infrastructure as a Service - Logical View ... 12
Figure 2-3 - OpenStack Logical Architecture ... 13
Figure 2-4 - Block Storage Virtualization ... 18
Figure 2-5 - OpenStack Basic Deployment .. 20
Figure 2-6 - Medium Complexity Deployment .. 21
Figure 3-1 – Platform as a Service – Conceptual View .. 22
Figure 3-2– Cloud Foundry Logical Architecture ... 23
Figure 3-3 – Platform as a Service – Deployment View ... 25
Figure 4-1 - Application Database - Simplistic Scenario .. 27
Figure 4-2 – Application Database – Complex Scenario ... 27
Figure 4-3 - Database Instance Usage Models ... 28

D2.2.1 – Storm Clouds Platform Architectural Design Version 1.1

© Storm Clouds 2014 Page 7 of 34

List of Tables
Table 2-1- OpenStack Modules and Sub-Modules .. 16
Table 2-2- KVM Selection Criteria .. 18
Table 2-3 - Block Storage Technologies Selection Criteria .. 19
Table 2-4 - Networking Technologies Selection Criteria ... 19

Version 1.1 D2.2.1 – Storm Clouds Platform Architectural Design

Page 8 of 34 © Storm Clouds 2014

Abbreviations
Acronym Description

API Application Programming Interface

CLI Command Line Interface

DB Database

DBMS DataBase Management System

DEA Droplet Execution Agents

DNS Domain Name System

DRDB Distributed Replicated Block Device

DHCP Dynamic Host Configuration Protocol

ERP Enterprise Resource Planning

GIS Geographic Information System

GRE Generic Routing Encapsulation

GTFS General Transit Feed Specification

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IP Internet Protocol

iSCSI internet SCSI

KML Keyhole Mark-up Language

KVM Kernel-based Virtual Machine

IaaS Infrastructure as a Service

IT Information Technology

L2 Layer 2 (networking)

L3 Layer 3 (networking)

LXC LinuX Containers

NAT Network Address Translation

NIST National Institute of Standards and Technology

N/A Not Available

PC Personal Computer

PaaS Platform as a Service

QEMU Quick EMUlator

RAID Redundant Array of Independent Disks

REST REpresentational State Transfer

RSS Really Simple Syndication

SCP Storm Clouds Platform

SaaS Software as a Service

SCSI Small Computer System Interface

SSL Secure Socket Layer

D2.2.1 – Storm Clouds Platform Architectural Design Version 1.1

© Storm Clouds 2014 Page 9 of 34

Acronym Description

TBC To Be Confirmed

TBD To Be Defined

TCP-IP Transmission Control Protocol – Internet Protocol (suite)

URL Uniform Resource Locator

VM Virtual Machine

VPN Virtual Private Network

WLAN Wireless Local Area Network

Version 1.1 D2.2.1 – Storm Clouds Platform Architectural Design

Page 10 of 34 © Storm Clouds 2014

1. Overall Architecture
The following diagram shows the logical view of the Storm Clouds Platform (SCP) architecture:

Figure 1-1 - Storm Clouds Platform - Overall Architecture

The Hardware Layer represents the physical equipment where the platform is hosted. It is composed of
servers, network connections and equipment, storage devices, etc. This layer is implemented by the hardware
of the data centre(s) where the platform is hosted.

Servers are equipped with any Linux distribution supporting OpenStack like Debian 7.0, openSUSE, SUSE
Linux Enterprise Server, Red Hat Enterprise Linux, CentOS, Fedora and Ubuntu 12.04/14.04 (LTS).

OpenStack® [5] implements the Infrastructure as a Service Layer that provides services for creating and
managing virtual computing resources in the cloud; for such purpose it uses some virtualization technologies
that will be described below in this document.

Cloud FoundryTM [6] implements the Platform as a Service Layer. It is worth noting that in SCP architecture the
PaaS Layer is built on top of the IaaS Layer. This means that the servers of the PaaS are actually
implemented as VMs running in the IaaS cloud. This implies several benefits in terms of flexibility as will be
explained subsequently.

The Database Layer provides the applications running in the cloud with installations of database engines;
developers can use them for implementing and/or deploying their applications without taking care of the
maintenance that is under the cloud provider responsibility. At the time of writing, the Database Layer
supports MySQLTM [7] and PostgreSQL [8] database engines.

The Management Layer implements functions for managing and maintaining the cloud platform and is mainly
designed for the cloud provider. At the time of writing this component is still to be designed but it will be
implemented using open software solutions like Zabbix [9] or Nagios [10] both available under GNU
General Public License (GPL) version 2.

Application Services collectively represents the applications hosted in the SCP. They are not part of the SCP
architecture but use the services the architecture provides for running

It is worth noting that the proposed architecture covers several layers, with increasing levels of abstraction,
because, in addition to defining the SCP platform, it aims to provide a reference framework that stakeholders
may use beyond the STORM project to implement their own cloud platform. For example, organizations that
require full control over the infrastructure may implement only the IaaS layer and not use any PaaS
technology, while others may hide the IaaS layer completely and expose only the PaaS platform to their
developers, in order to standardize deployments and abstract away infrastructure complexity. Others may
adopt a hybrid approach and deploy standard applications on the PaaS and application with special
requirements on the IaaS. In addition to this, all technologies included in the architecture are open source,
which means they can be implemented both on-premises or on public cloud providers, depending on
requirements such as security, data protection and cost trade-offs.

The following sections describe the architecture layers in greater details.

D2.2.1 – Storm Clouds Platform Architectural Design Version 1.1

© Storm Clouds 2014 Page 11 of 34

2. Infrastructure as a Service Layer

2.1. Concept

The Infrastructure as a Service (IaaS) layer provides basic IT capabilities that can be briefly described as
follows:

 computation services: the ability to start Virtual Machines (VMs) running an operating system and,
optionally, application software;

 storage services: ability to create storage elements (virtual disks or files);

 networking services: ability to create network elements like Layer 2 (L2) networks, subnets, DHCP
services, etc.

Generally speaking, when applications are deployed in a cloud environment, the IaaS layer provides the run-
time environment for the execution. The following, figure summarizes the concept:

Figure 2-1 - Infrastructure as a Service - Conceptual View

At the bottom of the stack, physical resources like physical machines, physical disks and physical networks
provide the actual environment for supporting the computational workload.

The IaaS platform is a software layer providing services for creating virtual resources (virtual machines, virtual
disks and virtual networks) that can be used instead of their physical counterparts in order to deploy and run
applications. Virtual resources are provided as services; this means that they are created when needed, used
to run applications and removed when the application is not anymore needed. The actual computation
happens at the physical level but physical resources and applications are not tightly bound together. This
makes it easier to reuse the physical infrastructure for several purposes, usually at different times.

The IaaS platform provides resources using virtualization, a set of technologies aimed to simulate the existence
of a piece of hardware which is “materialized” by a software layer running on top of the physical devices.
The idea is that the actual hardware is hidden to the applications and partially or temporarily used for
“impersonating” the role of a virtual piece of similar hardware.

Version 1.1 D2.2.1 – Storm Clouds Platform Architectural Design

Page 12 of 34 © Storm Clouds 2014

The target users of the IaaS Layer are both the cloud provider and the application developers. The cloud
provider uses IaaS Layer services for implementing higher layer services: s/he uses virtual machines for
running the PaaS Layer software solution or the database engines in the Database Layer.

The application developers, on the other hand, can use the IaaS Platform service in those cases where the
applications (or part of them) cannot be hosted in the PaaS Layer.

2.2. Logical View

The following picture shows the logical architecture of the Infrastructure as a Service Layer:

Figure 2-2 - Infrastructure as a Service - Logical View

The Hardware Layer represents the physical servers used for deploying the IaaS Layer. They are equipped
with a Linux operating system1, hosting both the Virtualization Layer and the IaaS Platform software
packages.

When a user wants to manage and/or control virtual computational resources, s/he interacts with the IaaS
Platform requiring a service via an API call (red flow in the picture). The IaaS Platform translates the high
level API call into lower level instructions for the Virtualization Layer in order to orchestrate all the actions
required for providing the service (grey flow). When the service request is fulfilled, the user can directly
interact with the Virtualization Layer for using the virtual resource (yellow flow).

For instance, when a user wants to create a virtual machine, s/he submits a “virtual machine creation request”
to the IaaS platform through a suitable API call. The IaaS Platform decides where (i.e. on what server) the
virtual machine can be started and interoperates with the Virtualization Layer for creating all the virtual
resources for fulfilling the request. It contacts the Storage Virtualization software for retrieving the image of
the virtual machine to boot, the Server Virtualization software (i.e. the Hypervisor) for activating a new virtual
machine, the Network Virtualization software for connecting the virtual machine to the network, etc.

1 It can be any Linux distribution supporting both OpenStack and the virtualization technologies mentioned in this
document. At the time of writing, the supported platforms are: Debian 7.0, openSUSE and SUSE Linux Enterprise Server,
Red Hat Enterprise Linux, CentOS, Fedora and Ubuntu 12.04/14.04 LTS. For more information, see
http://docs.openstack.org/

http://docs.openstack.org/

D2.2.1 – Storm Clouds Platform Architectural Design Version 1.1

© Storm Clouds 2014 Page 13 of 34

Finally, when the virtual machine is started, the user directly operates on it the same way s/he does with a
physical machine.

The Infrastructure as a Service Layer is the combination of the Operating System, the Virtualization Layer and
the IaaS Platform.

2.2.1. IaaS Platform

OpenStack is the IaaS Platform selected for the implementation of the SCP.

In addition to being an IaaS platform, OpenStack is also a project and a community backed by an
independent foundation supported by several corporate sponsors like Hewlett Packard, IBM, Cisco, Ericsson,
Intel, AT&T, Redhat, RackSpace, etc.. All source code is freely available under the Apache 2.0 license (see
[5]).

OpenStack provides a documented and open Application Procedure Interface (API). This is a very important
aspect in general - and for the project in particular - in order to fulfil the requirements stating that the whole
solution shall be implemented with open software products.

The following picture shows the OpenStack high-level logical architecture:

Figure 2-3 - OpenStack Logical Architecture

OpenStack is composed of the following modules mapping the fundamental IaaS services:

 Nova provides computation services (Virtual Machines);

 Neutron provides networking services (Virtual Networks);

 Cinder provides block storage services (Virtual Disks);

 Swift implements object storage services (Files);

 Horizon provides a web front-end for managing and controlling the resources allocated in the cloud;

 Glance implements a catalogue for storing virtual machine images;

 Keystone implements authentication and authorization functions;

 Heat uses the other components for orchestrating the creation/deletion of virtual resource
aggregations described by script files called “stacks”;

 Ceilometer monitors the usage of resources for metering and accounting purposes.

Version 1.1 D2.2.1 – Storm Clouds Platform Architectural Design

Page 14 of 34 © Storm Clouds 2014

Generally speaking, OpenStack implements storage services for storing data in the cloud but they can be
further classified as follows:

 block storage services: ability to manage virtual disks to connect to VMs running in the cloud (these
services are implemented by Cinder);

 object storage services: ability to manage files (i.e. objects) to be stored in the cloud (these services
are implemented by Swift).

It is worth noticing that while block storage services are mainly focussed on providing storage resources for
the VMs running in the same cloud where the storage is hosted, object storage services implement the ability
to store data coming either from VMs in the cloud or by any other application/device running outside the
cloud.

More in details block storage services create and manipulate virtual disks used by the VMs running in the
cloud: the cloud user can create virtual disks and attach/detach them to VMs for storing data. Object storage
services, on the other hand, provide the cloud users with the ability of uploading/downloading files in the
cloud. The files can even come from a client application running on a physical device outside the cloud, for
example a mobile phone in the hand of the user. In this case, the application running outside the cloud directly
interoperates with the object storage services calling a suitable API.

OpenStack modules communicate with each other using a message broker middleware (e.g. RabbitMQ) and
store status information in a centralized database (e.g. MySQL); for the sake of brevity, these elements are
not shown in the logical architecture.

OpenStack’s modules are broken down into sub-modules, implemented as Python programs, usually installed
as Linux services (i.e. daemons) on the physical servers of the data centre.

The following table describes the modules and the related sub-modules:

Module Sub-Module Type Description

Keystone keystone-all API/Mediator Implements API end-point and the logic for
authenticating cloud users

keystone CLI (U) Submits commands for managing users,
tenants, roles, etc.

keystone-manage CLI (A) Submits administrative commands for
managing the keystone module

Glance glance-api API Accepts API calls for image management

glance-registry Mediator Manages image metadata (e.g. size,
type)

glance CLI (U) Submits commands for managing virtual
machines images

glance-manage CLI (A) Submits administrative commands for
managing the glance module

Nova nova-api API Implements API for managing
computational resources (i.e. VMs)

nova-scheduler Mediator Determines on which node a virtual
machine should run

nova-conductor Mediator Mediates interactions between nova-
compute and the cloud database

nova-cert Mediator Manages x509 certificates (only needed
for EC2 API)

nova-consoleauth Mediator Authorizes tokens that console proxies
provide. See nova-novncproxy

nova-novncproxy Mediator Proxy for accessing running instances
through a VNC connection

nova-compute Agent Manages VM instances through hypervisor
API

nova CLI (U) Submits commands for managing
computational resources (VMs)

nova-manage CLI (A) Submits administrative commands for
managing the nova module

Cinder cinder-api API Implements API for managing block
storage resources (i.e. virtual disks)

D2.2.1 – Storm Clouds Platform Architectural Design Version 1.1

© Storm Clouds 2014 Page 15 of 34

Module Sub-Module Type Description

cinder-scheduler Mediator Determines on which node a virtual disk
should reside

cinder-volume Agent Manages virtual disks through the API
provided by the block-storage
virtualization provider

cinder CLI (U) Submits commands for managing virtual
disks

cinder-manage CLI (A) Submits administration commands for
managing the cinder module

Neutron neutron-server API/Mediator Accepts API calls for virtual network
resources management

neutron-dhcp-agent Agent Distributes IP addresses to VMs in
collaboration with dnsmasq [11], an
external DHCP server

neutron-metadata-agent Agent Provides VMs with a HTTP end-point for
retrieving metadata

neutron-l3-agent Agent Implements L3/NAT forwarding to provide
external network access for VMs running in
the cloud (see also [12])

neutron-plugin-
openvswitch-agent

Agent Performs configurations for creating virtual
L2 trunks and for connecting VMs to them

neutron CLI (U) Submits commands for managing virtual
network objects like L2 trunks, ports,
subnets, virtual routers, etc.

neutron-manage CLI (A) Submits administrative commands for
managing the neutron module

Horizon openstack-dashboard GUI It’s a django [13] Python application
running as an Apache [14] HTTP server
application. It implements a web-based
user interface for submitting IaaS requests

Swift swift-proxy-server API/Mediator Implements API for managing object
storage resources, like files and containers,
and the related metadata

swift-object
swift-object-replicator
swift-object-updater
swift-object-auditor

Agent/Mediator Manage actual objects (files) on the
storage nodes.

swift-container
swift-container-replicator
swift-container-updater
swift-container-auditor

Agent/Mediator Manage a mapping of containers, or
folders, within the Object Storage service.

swift-account
swift-account-replicator
swift-account-reaper
swift-account-auditor

Agent/Mediator Manages accounts defined with the Object
Storage service.

swift CLI (U) Submits commands for managing object
storage resources and related metadata

Heat heat-api API Accepts API calls for orchestration services

heat-engine Mediator Create virtual resources described into
templates by orchestrating API calls

heat CLI (U) Submits commands for creating virtual
resource “stacks”

heat-manage CLI (A) Submits administrative commands for
managing the heat module

Ceilometer ceilometer-api API Accepts API calls for telemetry services

ceilometer-agent-central Mediator Polls for resource utilization statistics and
for resources not tied to instances or
compute nodes

Version 1.1 D2.2.1 – Storm Clouds Platform Architectural Design

Page 16 of 34 © Storm Clouds 2014

Module Sub-Module Type Description

ceilometer-alarm-notifier Mediator Allows setting alarms based on threshold
evaluation for a collection of samples

ceilometer-collector Mediator Monitors the message queues (for
notifications and for metering data coming
from the agent) and turns them into
metering messages

ceilometer-agent-compute Agent Polls for resource utilization statistics on
the hosting compute node

ceilometer CLI (U) Submits commands for using telemetry
services

Table 2-1- OpenStack Modules and Sub-Modules

The table classifies the sub-modules in types:

 API - Application Program Interface front-end provides an API end-point that cloud user can call for
submitting IaaS requests. API modules are installed as Linux daemons and implement a RESTful [15]
interface.

 Mediator – Mediators are daemons coordinating and orchestrating the actions for fulfilling API
requests.

 CLI (U): Command Line Interpreters for cloud Users are programs, usually running on users‘ client
machine, for submitting API requests. They are implemented as Python programs callable from the
shell of the cloud user‘s machine. CLI (U) programs submit API requests to API daemons.

 CLI (A): Command Line Intepreters for cloud Administrators are programs, exclusevely running on
servers implementing the cloud (cloud nodes), that allow the cloud administrator to perform
administrative tasks like showing logged error messages, migrating/synchronizing the cloud
database, etc;

 GUI: Graphical User Interface provides a point-and-click interface for using infrastructure services
(e.g. starting/stopping VMs, creating/attaching/deleting virtual disks, etc.);

 Agent: This type of sub-module, implemented as a daemon, is responsible for directly interacting with
the virtualization layer and managing the virtualized resources (e.g. VMs). For this reason, agent sub-
modules are directly deployed on the nodes that provide the virtual resources and interoperate with
the virtualization layer. For instance, nova-compute (the nova module agent), is deployed on the
nodes dedicated to run virtual machines and interoperate with the hypervisor installed on such nodes.

The classification above helps the design of the OpenStack deployment; in fact, although in principle every
OpenStack sub-module can run on a dedicated node, usually several sub-models are co-located on a single
node or set of nodes.

API sub-modules are deployed on nodes that can be accessed by any cloud user. This arrangement makes it
possible to require services via API calls. In case OpenStack is used for implementing a public cloud platform,
these nodes must be accessible from Internet.

Mediator modules are deployed on nodes that cannot be accessed by cloud users because they implement
the internal logics of the IaaS cloud platform.

CLI (U) sub-modules are deployed on any machine that’s being used for submitting API calls to OpenStack.
These machines can be any node in the cloud but also any client machine running outside the cloud. For
instance, a cloud user can deploy these components on her PC in order to being able to submit API calls to
OpenStack.

CLI (A) modules are deployed on nodes that cannot be accessed by cloud users but need to be accessed by
the cloud administrator(s); they implement administration commands submitted by administrators, only. These
sub-modules are usually co-located on the same nodes hosting mediators.

GUI sub-module, being implemented as a web applications running under Apache HTTP server, is deployed
on machine accessible by the cloud users.

Agent sub-modules are deployed on nodes that make available the computational resources. For example,
nova-compute (the nova agent sub-module) is deployed on all the nodes running the hypervisors and hosting
the virtual machines activated in the cloud. Similarly, cinder-volume (the cinder agent) is deployed on any
node providing block storage resources (i.e. virtual disks).

Note that some Swift sub-modules are necessarily co-located because they collectively deliver the
management of a certain type of object on a node. For instance, swift-object* sub-modules collectively

D2.2.1 – Storm Clouds Platform Architectural Design Version 1.1

© Storm Clouds 2014 Page 17 of 34

manage files stored into a node of a cloud: swift-object sub-module fulfils object retrieval/store requests,
swift-object-replicator replicates objects in the cloud (according to the configured replication policies), swift-
object-updater updates objects (e.g. deletes objects) and swift-object-auditor reports information about the
received requests in the log file for auditing purposes.

The actual configuration of OpenStack is a quite complex and elaborated process that is out of the scope of
this document. OpenStack sub-modules are configured by editing a set of suitable configuration files
managed by the cloud administrator. Annex A reports an example. For more information about the
OpenStack configuration, please see the OpenStack community documentation page [16].

2.2.2. Virtualization Layer

This section briefly describes the virtualization technologies used for implementing the SCP.

It is worth noticing that OpenStack supports several and, in some cases, alternative virtualization technologies:
for instance, for delivering server virtualization services, OpenStack supports various hypervisors like Kernel-
based Virtual Machine (KVM), XenServer/XCP, Hyper-V, VMware vSphere, etc.

This document selects a set of virtualization technologies that form an integral part of the SCP architecture.
The selection is made according to the following criteria:

 Licensing: the technologies must be backed by some open software license;

 Functionality: the technology must support most of the functions made available by OpenStack;

 Documentation: the technology in itself and the integration with OpenStack must be well documented
and the documentation must be freely available;

 Minimal Software Requirements: the technology shall not require special or specific additional
software and must run on the selected operating system;

 Minimal Hardware Requirements: the technology shall not require special or specific hardware
features or devices for operating.

2.2.2.1. Server Virtualization

Server virtualization is the technology for creating and managing Virtual Machines: this kind of technology is
implemented by hypervisors.

OpenStack supports several hypervisors, as reported in the OpenStack Hypervisor Support Matrix [17].

The hypervisor selected for SCP is Kernel-based Virtual Machine (KVM) [18]; the following table shows how
KVM meets the selection criteria:

Criteria Notes

Licensing According to [19], “KVM's parts are licensed under various GNU licenses:

 KVM kernel module: GPL v2

 KVM user module: LGPL v2

 QEMU virtual CPU core library (libqemu.a) and QEMU PC system emulator: LGPL

 Linux user mode QEMU emulator: GPL

 BIOS files (bios.bin, vgabios.bin and vgabios-cirrus.bin): LGPL v2 or later”

Functionality According to [17], KVM and QEMU score the higher level of supported OpenStack
functions.

Documentation KVM documentation is freely available (see [18]). In addition, the integration with
OpenStack and the installation procedures are fully documented and freely available
(see [16])

Software
Requirements

According to [18] (see Status section), “KVM is included in the mainline linux kernel since
2.6.20...” and “It is also available as a patch for recent Linux kernel versions and as an
external module that can be used with your favourite distro- provided kernel going back up
to 2.6.16, therefore including all latest versions for Enterprise Linux Distributions.” For this
reason, KVM meets the minimal software requirements because Linux is the Operating
System selected for implementing SCP.

Hardware
Requirements

According to [18] (see Status section), KVM runs on several hardware architectures like
generic Intel®-based hosts and AMD-based hosts. The only requirement for KVM to
work is that the processors implement the virtualization technology (VT for Intel and SV
for AMD). This feature is normally implemented on processors used into typical server

Version 1.1 D2.2.1 – Storm Clouds Platform Architectural Design

Page 18 of 34 © Storm Clouds 2014

Criteria Notes

and desktop machines.
Table 2-2- KVM Selection Criteria

2.2.2.2. Storage Virtualization

Storage virtualization is the technology for creating and managing block storage elements (i.e. virtual disks)
used as persistent disks by the virtual machines.

OpenStack supports several storage virtualization technologies, as reported in the OpenStack Cinder Support
Matrix [20].

When selecting a block storage virtualization technology, in addition to the criteria defined in section 3.2.2,
we have also to take into account the type of protocol used by the VMs to communicate with the virtual disks.
In fact, normally VMs and virtual disks are hosted (or can be hosted) on different nodes; therefore when a VM
reads/writes data from/to virtual disks there must be a communication between the node hosting the VM and
the node hosting the virtual disk. This communication happens according to a protocol that must be supported
both by the virtualization technology managing virtual machines (i.e. the hypervisor) and the virtualization
technology managing virtual disks.

The following diagram summarizes the concept:

Figure 2-4 - Block Storage Virtualization

The picture also shows that, through virtualization, the VMs are completely “unaware” of what kind of physical
storage actually hosts the virtual disks (VDisks, in the picture). Supported solutions range from local disks,
directly connected to the Block Storage Node mother board through SCSI bus, to dedicated storage
appliances.

The technologies selected for implementing the SCP block storage virtualization are:

 Storage Virtualization Target: Linux SCSI target framework [21], known as tgt, is a software
package installed on a Linux-based block storage node and works as an iSCSI target providing an
interface for accessing virtual disks;

 Protocol: Internet SCSI (iSCSI) [22], an IP-based storage networking standard for linking data
storage facilities;

 Physical Storage: Logical Volume Manage (LVM) [23], providing a volume group local to the block
storage nodes.

The following table shows how selected technologies meet the selection criteria:

Criteria Notes

Licensing tgt is free software under the terms of the GNU General Public License [24]
LVM is available under GNU General Public License [25]

Functionality According to OpenStack Cinder Support Matrix [20], the selected technologies are
considered as the reference for OpenStack development; in this perspective, they fully
support all the OpenStack functions

Documentation tgt documentation is freely available (see [21])
LVM documentation is freely available (see [23])
OpenStack integration and the installation procedures are fully documented and freely
available (see [16])

Software
Requirements

tgt runs on many widely used Linux distribution like RHEL, CentOS, Fedora, SUSE,
Debian, Ubuntu and Gentoo. It requires Linux kernel 2.6.22 or higher [21].

D2.2.1 – Storm Clouds Platform Architectural Design Version 1.1

© Storm Clouds 2014 Page 19 of 34

Criteria Notes

LVM runs on many Linux distributions like CentOS, Debian, Fedora, Gentoo, Mandriva,
MontaVista Linux, openSUSE, Pardus, Red Hat Enterprise Linux, Slackware, SLED, SLES,
Linux Mint, Kali Linux, and Ubuntu [25].

Hardware
Requirements

No specific hardware configurations or devices are required for running the selected
technologies. On the other hand, any mass storage device that can be mounted on the
selected Linux operating system as a read/write disk is supported.

Table 2-3 - Block Storage Technologies Selection Criteria

2.2.2.3. Network Virtualization

Network virtualization is by far the most complex area in OpenStack. This is due to the inherent complexity of
the topic in itself and the large amount of alternative technologies that can be used in OpenStack
deployments. For more information on the supported network virtualization technologies, see [26].

In order to fully support the functions required by OpenStack, the underlying networking technologies need to
collectively provide services for creating/managing virtual objects or services of various types like L2 network
entities (e.g. layer 2 trunks, ports, etc.), L3 entities (e.g. IP addresses NATting, firewall services) and a DHCP
service.

The networking virtualization technologies selected for SCP are:

 Open vSwitch: implements a distributed virtual multilayer switch . It provides API for creating virtual
switches and for connecting virtual machines. Virtual switches are hosted on the same nodes running
the VMs that are connected;

 Linux iptables: it’s a technology, natively supported by many Linux distributions, that allows the
system administrators to directly operate on network packet filtering and NATting tables and it’s
implemented by Linux operating system at kernel level [27]. OpenStack integrates with iptables for
implementing firewalling and NATting functions;

 dnsmasq: “Dnsmasq provides network infrastructure for small networks: DNS, DHCP, router
advertisement and network boot” [11]. In OpenStack deployments, dnsmasq mainly implements
functions for distributing IP addresses to VMs via DHCP.

The following table shows how the selected technologies meet the selection criteria:

Criteria Notes

Licensing Open vSwitch is open source software available under Apache 2.0 license (see [28]).
Linux iptables is made available under GNU General Public License (see [29]).
Dnsmasq is distributed under GNU General Public License, version 2 and 3 (see [11]).

Functionality The combination of the selected underlying technologies is considered the reference for
OpenStack development; therefore it fully supports the OpenStack functions.

Documentation The selected technologies are fully described on freely available documentation (see
[28], [29] and [11]). In addition, the OpenStack integration and installation procedures
are fully documented and freely available (see [16]).

Software
Requirements

Open vSwitch is officially available for Debian, Fedora and Ubuntu Linux distributions
(see [30]).
Linux iptables runs under any Linux distribution fully supporting Linux kernel version 2.4.x
and 2.6.x (see [31]) that are, in turn, integral part of most of the Linux distributions like
CentOS, Debian, Fedora, openSUSE, Red Hat Enterprise Linux, and Ubuntu.
Dnsmasq: according to [11], “Supported platforms include Linux (with glibc and uclibc),
Android, *BSD, and Mac OS X” and “Dnsmasq is included in most Linux distributions and
the ports systems of FreeBSD, OpenBSD and NetBSD”. As described in OpenStack
installation documentation [16], dnsmasq is supported by Debian, openSUSE, SUSE Linux
Enterprise Server, Red Hat Enterprise Linux, CentOS, Fedora and Ubuntu Linux
distributions.

Hardware
Requirements

No specific hardware configurations or devices are required for running the selected
technologies; on the other hand, OpenStack deployments can significantly benefit of
hardware configurations where nodes are equipped with multiple Network Interface
Cards (NICs). For more information, see section Error! Reference source not found..

Table 2-4 - Networking Technologies Selection Criteria

Version 1.1 D2.2.1 – Storm Clouds Platform Architectural Design

Page 20 of 34 © Storm Clouds 2014

2.3. Deployment View

OpenStack can be deployed in several ways but there are some well-known and accepted good practices
for implementing deployment architectures. Usually, the deployment architecture also depends on the scope
and the purpose of the cloud and/or the constraints on the physical hardware that is being used (e.g. number
and type of physical machines, network connections, etc.).

Options range from single-node all-in-one deployment, where all the modules are installed on a single node
that also provides the physical resources for hosting virtual resources (this deployment is suitable for demos
and development use cases), to very complex deployments addressing many requirements like high
availability of the IaaS platform, nodes distribution in multiple data centres, support to different hardware
technologies, etc. (this deployment is suitable for public cloud providers).

In this section, we provide some deployment examples (models) that can be used as a reference when
designing an actual cloud platform.

In this phase, the project consortium implements and utilizes the “Medium Complexity Deployment” model.

Basic Deployment

Figure 2-5 - OpenStack Basic Deployment

The nodes in the deployment architecture are:

 Cloud Controller Node: it hosts all the centralized functions like the cloud status database, the
message broker, the compute and the storage schedulers, API endpoints, authentication services,
image catalogue, orchestration engine, monitoring and accounting functions, the web dashboard
server, etc.;

 Network Controller Node: it hosts some network services like DHCP, layer 2 switching, layer 3 routing
and also provides access to VMs from Internet;

 Storage Node: it hosts virtual disks;

D2.2.1 – Storm Clouds Platform Architectural Design Version 1.1

© Storm Clouds 2014 Page 21 of 34

 Compute Node: it hosts the VMs running in the cloud.

The networks in the deployment architecture are:

 Management Network: it is used for the communication between the OpenStack elements;

 Data Network: it is used for the communication between the VMs running in the cloud and for giving
VMs access to Virtual Disks;

 External Network: it is used for the communication between the VMs running in the cloud and any
other element external to the cloud (e.g. end users on Internet);

 API Network: it exposes all OpenStack API endpoints.

A variation of this deployment “collapses” the functions of compute and storage nodes into a single node type
providing both the resource types: such a deployment model is described in the OpenStack official
documentation [32].

It is worth noticing that the deployment described above does not address some important aspects like high
availability and load balancing; on the other hand it can be used for development and testing purposes.

Medium Complexity Deployment

Figure 2-6 - Medium Complexity Deployment

In this deployment model both the controller and the network nodes are replicated and configured as a high
availability cluster; a voting node is added for monitoring and controlling the nodes. The reason for the
replication is that both the node types are stateful: the controller node keeps the overall status of the cloud
(stored in a database) and the message bus. The network controller node stores information about the NATted
IP addresses of the VMs and the DHCP server status.

The deployment model also adds two node types for implementing the Object Storage services: Object
Storage Node and Object Storage Proxy. The former node type is dedicated to store the user’s objects (i.e.
files); the OpenStack components running on these nodes are also responsible of replicating the objects. The
nodes of the latter type, the Object Storage Proxy, receive the cloud user’s requests. They host the Object
Storage API front ends (i.e. swift-proxy-server). The reason for dedicating a node type to this software
component is that these nodes receive all the requests for uploading/downloading files to/from the cloud
resulting in a significant workload and, more important, network traffic. As described in the picture, Object
Storage Proxies are directly connected to the External Network.

For more information on high availability / load balancing deployment, see also [33].

Version 1.1 D2.2.1 – Storm Clouds Platform Architectural Design

Page 22 of 34 © Storm Clouds 2014

3. Platform as a Service Layer

3.1. Concept

While IaaS focuses on managing the fundamental infrastructure building blocks in a cloud environment, thus
allowing to transfer any existing deployment to the cloud with little or no architectural changes, Platform as a
Service (PaaS) [34] goes one step further and focuses on managing applications instead of infrastructure. The
target user in this case is the application developer, who can deploy an application to the PaaS and expects
it to just work, delegating all infrastructure management tasks to the PaaS and focusing on development work
instead.

As a consequence, the main resources involved in deploying an application to a PaaS are not virtual machines,
virtual storage and virtual network objects, but application services, configuration and artifacts, as shown in
the figure below:

Services Configuration Artifacts

Developers

PaaS Platform

Physical Hardware / IaaS

Figure 3-1 – Platform as a Service – Conceptual View

Services are any external component that the application requires in order to run (e.g. a database, a
messaging service, etc.). They are provided by the PaaS platform directly and the user can request their use
for her own application. For example the user can request the creation of a MySQL database schema and the
PaaS will create one on the local MySQL service, without the need for the user to install and manage a
private MySQL instance.

Configuration resources include the regular application settings, but also the parameters needed by the PaaS
to deploy the application, such as the required RAM and disk size, the required runtime resources (such as the
JDK and application server for Java web applications) and the services (such as the database) that must be
made available to the application. Depending on the platform, the configuration may also include thresholds
for automatically scaling the application as load increases or decreases.

Artifacts represent the application binaries that must be deployed on the PaaS, according to the specified
configuration and using the specified services.

Since they work at the application level, PaaS platforms are a great way for developers to deploy scalable
and highly available applications without requiring advanced infrastructure skills or a dedicated operations
team. On the other hand, this comes at the price of some restrictions in terms of system customization. In fact,
since the deployment platform is standardized, developers must take care of using technologies that are
supported by the platform. For instance, if the platform supports only Java and PHP, a .NET application will
not run on it. Similar considerations apply for application servers and database engines. However typical
web applications that run in the cloud use standard components that are supported by major PaaS platforms,
so these constraints are not a problem in most cases.

Finally, it is worth noting that IaaS and PaaS are not mutually exclusive, since a user may choose to run some
services on a IaaS and use them from an application deployed on a PaaS. The two approaches can also be
combined together from the cloud provider point of view. In fact while the provider may run the PaaS on

D2.2.1 – Storm Clouds Platform Architectural Design Version 1.1

© Storm Clouds 2014 Page 23 of 34

bare metal directly, she may also choose to run it on top of a IaaS in order to take advantage of resource
scalability without the need to provision new physical hardware.

3.2. Logical View

The PaaS platform selected for SCP is Cloud Foundry [6].

Cloud Foundry is an open source project, released under the business-friendly Apache License 2.0, started by
VMware® in 2011 [35] and subsequently led by Pivotal® (a joint venture between VMware and EMC). As of
February 2014, Pivotal announced that the project will be governed by a Cloud Foundry Foundation [36]
with strong industry support from EMC, IBM, HP, Pivotal, Rackspace, SAP and others. More members
announced the intention to join the Foundation in May 2014 [37].

The sound architecture, industry backing and open governance model all contribute to make Cloud Foundry an
attractive choice as a platform that may become the de-facto open-source standard PaaS in the future,
similar to what OpenStack represents in the IaaS field.

The figure below shows the logical architecture of Cloud Foundry:

Droplet Execution
Agent 1

App 1 App 2

Blob Store

Managed Service

Droplet Execution
Agent 2

App 3 App 4

Broker Service

User-Provided
Service

Service

NATS Message Bus

Metrics Collector Log Aggregator

Cloud Controller Health Manager

UAA OAuth 2 Server Login Server

Router

Figure 3-2– Cloud Foundry Logical Architecture

At the top level, the Router component receives all incoming traffic and dispatches it either to the Cloud
Controller or to applications, while the OAuth2 Server and Login Server handle authentication of Cloud
Foundry users.

The Cloud Controller is the component that manages the lifecycle of applications deployed on the cloud,
taking care of starting them, connecting the required services and so on. Application status is monitored by the
Health Manager, which can trigger a re-spawn in case an application dies unexpectedly.

Version 1.1 D2.2.1 – Storm Clouds Platform Architectural Design

Page 24 of 34 © Storm Clouds 2014

The Droplet Execution Agents (DEAs) are the components that actually host applications in Cloud Foundry.
While a minimal deployment may have a single DEA, in most cases there will be multiple DEAs each running
on a different machine. In order to support multi-tenancy, each application is run in a private environment
within the DEA. However, instead of isolating environments using virtual machines as IaaS platforms do, Cloud
Foundry uses operating system containers [38] managed via the Warden [39] component. The Warden
implementation for Linux is in turn based on Control Groups [40]. Container technologies take advantage of
APIs implemented at the operating system level in order to create an isolated environment (i.e. the container)
with its own file system, software packages, processes, memory space and network resources. Processes in a
container cannot read data in other containers or interfere with processes in different containers and
interaction between containers is only possible via traditional intermachine communication, such as network
connections. In other words, containers only share the underlying operating system. With respect to traditional
virtualization, this approach requires all applications to be designed to run on a common platform (i.e. a
certain version of a single operating system) but also offers several advantages in terms of reduced
overhead. In fact there is no need to spawn a new full machine with its operating system copy for each
application: all applications share the same operating system installation, thus reducing the perapplication
RAM and disk footprint dramatically and allowing higher application density on a single physical machine.
Also, because there is no virtualization involved, containers offer additional flexibility in terms of deployment.
In fact the PaaS can run on bare metal, removing the hypervisor overhead and optimizing performance, but it
can also be installed over an IaaS layer, thus maximizing flexibility.

In addition to allocating a container on a DEA, running an application requires a buildpack, which consists in a
package that is able to detect the application type, install the required runtime components and execute the
application. Cloud Foundry provides official buildpacks for Java, PHP, Python, Ruby, Node.js and Go, while
additional buildpacks are provided by the community. It is possible to create custom buildpacks by
implementing the required script-based interface. When a developer pushes an application to Cloud Foundry,
she can specify a buildpack to use or let the platform auto-detect the application type. For example in case
of a Java Web Application, the buildpack may check if the application contains a WEB-INF/web.xml file.
Every buildpack must implement a detection script that returns successfully if the buildpack can run the
application, so that Cloud Foundry can automatically find a suitable buildpack by invoking that script on
every available buildpack. In addition to detection, buildpacks implement a script that installs the required
runtime components, such as the JDK and application server for a Java Web Application. These additional
software packages may be included in the buildpack itself or downloaded from the Internet, when required.
Finally the buildpack implements a third script that Cloud Foundry invokes to start the application.

As we mentioned earlier most applications need to interact with services, such as databases, which are not
part of the application and must be provisioned by the platform. Cloud Foundry supports two kinds of
services: Managed Services and User-Provided Services. A Managed Service is fully integrated with the
platform and can be provisioned on user request by Cloud Foundry. For example, if the service is a
database, Cloud Foundry can create a new schema on it when the user requests a new instance of the service.
Once a service instance has been created it can be bound (i.e. made available) to a certain application of
the user. In order to satisfy different requirements, each service can offer several plans that define the
features of the service instance, similar to flavours in the IaaS world. For example a “smalldb” plan may
provide a 100 MB database on a single server, while a “largedb” plan may provide a 10 GB database
replicated over two servers. Cloud Foundry controls Managed Services via a component called broker that
must be provided with the service and implements the Service Broker API. Cloud Foundry includes a broker for
MySQL, but brokers for other services are available from the community and of course it is possible to
integrate any service by implementing a custom broker. In cases when full integration with Cloud Foundry is
not required or desired, it is possible to use User-Provided Services. In this case service instances, such as
database schemas, are created outside of Cloud Foundry with traditional mechanisms. Once created,
instances must be registered in Cloud Foundry before they can be bound to applications.

Other components in the architecture include the Blob Store, which holds application binaries and buildpacks,
and NATS. The latter provides a publish-subscribe system that Cloud Foundry components use to communicate
with each other.

Finally, the Metrics Collector can gather various metrics from the platform components in order to monitor
system health, while the Log Aggregator collects the logs of applications deployed in DEAs so that users can
inspect them. Note that the Metrics Collector allows to write plugins, called “historians”, in order to export
data to external services. This enables integration with general purpose monitoring tools, such as Zabbix or
Nagios, that will be used to consolidate metrics from all components of the whole SCP platform in a single
place. Further discussion of the monitoring infrastructure is postponed to D2.2.2.

D2.2.1 – Storm Clouds Platform Architectural Design Version 1.1

© Storm Clouds 2014 Page 25 of 34

The main tool for controlling a Cloud Foundry installation is the Command Line Interface, available for
Windows, Linux and Mac OS X. Thanks to the CLI it is possible to write scripts to automate tasks such as
deploying new versions of applications or scaling horizontally according to the current workload. Additional
developer tools include an Eclipse [41] plugin, that allows to configure and deploy applications directly from
the IDE, and plugins for Maven [42] and Gradle [43].

3.3. Deployment View

Because Cloud Foundry relies on containers instead of virtual machines in order to run applications, it is
possible to deploy the platform both on bare metal hardware and virtual infrastructure. While bare metal
may be an interesting option when performance is critical, deploying Cloud Foundry on virtual infrastructure,
especially on a IaaS, allows to obtain maximum flexibility in terms of scalability, high-availability and costs. In
fact when the PaaS is deployed on a IaaS, it can run with a minimal number of components (e.g. DEAs) when
load is light and exploit the autoscaling features of the IaaS to dynamically allocate new instances when the
load increases. When the load decreases again, the number of instances can be scaled down back to a
minimum. This model of operation is particularly attractive when thinking of a deployment on a IaaS public
cloud provider. In fact costs can be minimized by keeping the number of instances low when the load is
limited, at the same time achieving optimal performance by increasing the number of instances only when
necessary. In addition, using a public IaaS removes the initial investment required to acquire the hardware
infrastructure and the subsequent costs for infrastructure upgrades. Regarding highavailabiliy concerns,
deploying on a IaaS allows to replicate components over independent availability zones, which may be
geographically distributed in case of a public IaaS.

While design choices for the SCP have taken into account scalability, load-balancing and high-availability
issues, those themes will be addressed in detail in the second version of the architecture that will be provided
in D2.2.2. The architecture described in this deliverable focuses on providing an initial working platform that
can be used for migrating and testing the applications selected by the consortium in a cloud environment that
is functionally equivalent to the final one.

Based on the above considerations, Figure 3-3 shows the deployment view for the PaaS layer:

OpenStack platform

Cloud Foundry DEA 1

Application 1

Application 2

Cloud Foundry DEA 2

Application 3

Other Cloud Foundry
Components

PostgreSQL Service

MySQL Service

Figure 3-3 – Platform as a Service – Deployment View

Due to the advantages mentioned previously, Cloud Foundry is deployed on top of the IaaS layer,
represented by the OpenStack platform. Each Cloud Foundry component runs in its own virtual machine. Since
this version of the architecture does not address replication, there is only a single instance for each component
and service, with the possible exception of DEAs. In fact depending on the amount of resources required by
the applications it may be necessary to allocate multiple DEAs instead of a single very large one, which is
expensive on a public cloud and diverges from the horizontal scalability philosophy that privileges using
multiple smaller instances in order to increase parallelism and avoid single points of failures.

It is worth noting that thanks to the availability of several OpenStack cloud providers, this architecture can be
easily implemented on a public cloud infrastructure, with the associated flexibility and cost benefits. Of course
deploying Cloud Foundry over a IaaS is attractive for organizations that require full control over both IaaS
and PaaS resources, but this implies the burden of administering the platform. Organizations that wish to
benefit from the PaaS abstraction without delving into the details of the underlying infrastructure can rely on

Version 1.1 D2.2.1 – Storm Clouds Platform Architectural Design

Page 26 of 34 © Storm Clouds 2014

one of the public cloud providers that offer ready-to-use Cloud Foundry-based platforms and delegate
management of all the underlying layers to the provider.

D2.2.1 – Storm Clouds Platform Architectural Design Version 1.1

© Storm Clouds 2014 Page 27 of 34

4. Database Layer

4.1. Concept

Generally speaking, applications use a database for storing persistent data and the SCP Database Layer
provides capabilities for supporting this feature.

In principle, any application could run its own database instance and, if necessary, the SCP architecture
supports such a scenario. As a matter of fact, an application could be deployed on a single virtual machine
that hosts both the application (e.g. the web front end) and the database engine:

Figure 4-1 - Application Database - Simplistic Scenario

The scenario described above is applicable to very simple use cases where high availability and load
balancing features are not strictly required, for instance for development and testing purposes.

In a more complex scenario, the application could be deployed using multiple VMs: some of them hosting web
front end instances (in a load balancing configuration), others hosting the database engine (in a high
availability configuration).

Figure 4-2 – Application Database – Complex Scenario

It’s worth noticing that, in order to really address high availability issues, some VMs shall be deployed on
different nodes: for instance the VMs hosting the database copies must run on different machines.

The scenarios described above are fully supported by SCP and can be implemented using IaaS capabilities
only. In such cases, it is cloud user’s responsibility to design the application deployment architecture that is
implemented using the building blocks made available by the IaaS Layer. For instance, for implementing a
two tier application, the cloud user needs to prepare the VMs for the application tier and the VMs for the
database tier. In addition, if high availability is required, the cloud user needs to configure the VMs with the
database tier in a high available, maybe clustered, architecture.

SCP architecture implements a specific module, the Database Layer, providing database capabilities and – at
the same time – addressing high availability and load balancing issues. In this perspective, the Database
Layer alleviates the cloud user’s task because s/he can focus on the application development and adaptation
without taking care of resolving some deployment issues.

Version 1.1 D2.2.1 – Storm Clouds Platform Architectural Design

Page 28 of 34 © Storm Clouds 2014

4.2. Logical View

As reported in the overall architecture (see Figure 2-3 - Storm Clouds Platform - Overall Architecture), the
Database Layer can be both used by applications running in the IaaS or in the PaaS.

The Database Layer supplies two database engines: MySQL [7], available under GPL V2 license, and
PostgreSQL, available under PostgreSQL License (similar to BSD and MIT license [44]).

From the implementation view point, the Database Layer is designed as a set pre-packaged virtual machine
images with an installation and configuration of the database engine. They are activated as virtual machines
in the SCP taking advantage of services of the IaaS Layer. The deployment of the virtual machines is
orchestrated using OpenStack Heat services.

This kind of solution enables different usage models:

 exclusive: a database instance is activated for a single application;

 shared: a database instance can be used by different applications, provided that they use different
database schemes.

The following picture summarizes the concept:

Figure 4-3 - Database Instance Usage Models

The picture shows three applications with two Web Front End nodes each. Application 1 and Application 2
share a single database instance while Application 3 use a database instance in exclusive mode.

4.3. Deployment View

At the time being, for each supported database engine type (e.g. MySQL), a single DB instance is deployed
in the SCP and each application uses a database created in the single instance. The cloud administrator is
responsible of creating the databases on cloud user’s request. The cloud administrator delivers the credentials
to cloud users who are, in turn, responsible of creating the schema, accessing the DB, etc.

D2.2.1 – Storm Clouds Platform Architectural Design Version 1.1

© Storm Clouds 2014 Page 29 of 34

5. Management Layer

5.1. Concept

The management layer implements functions for managing and maintaining the cloud platform and is
designed for the organization in charge of providing the cloud computational services implemented by the
SCP, not hosted by the SCP.

In SCP architecture the management layer mainly implements monitoring functions because other functions
usually allocated to this layer are actually implemented in other components.

For instance, catalogue management (i.e. functions for managing VM templates and application templates) is
implemented by both the OpenStack IaaS Platform and Cloud Foundry PaaS Platform.

Monitoring refers to functions for verifying the availability and the performances of the infrastructure. It is
designed for verifying the working conditions of the physical resources (e.g. servers) but can also be useful for
monitoring virtual resources (i.e. virtual machines) used for implementing advanced cloud services like PaaS
components, virtual machines running DB engines (maybe for implementing DB as a Services components), etc.

At the time of writing, this component is still to be designed but it will be implemented using open software
solutions like Zabbix [9] or Nagios [10].

5.2. Logical View

This section is postponed to D2.2.2.

5.3. Deployment View

This section is postponed to D2.2.2.

Version 1.1 D2.2.1 – Storm Clouds Platform Architectural Design

Page 30 of 34 © Storm Clouds 2014

6. Summary and Conclusions
This document has described the first release of the Storm Clouds Platform (SCP) architecture. SCP is the cloud
infrastructure designed for hosting the applications selected by the STORM CLOUDS consortium for
experimenting the migration of digital services to a cloud computing paradigm.

SCP is broken down in layers each one implementing a set of highly related functions and services:
Infrastructure as a Service Layer provides basic computational objects like virtual machines, virtual disks and
virtual networks; Platform as a Service Layer is designed for hosting web-based applications, Database
Layer makes it available services for creating, managing and using databases; Management Layer
implements functions, typically used by the cloud platform administrator, for controlling, monitoring and
administering the whole platform.

For each layer, the architecture describes what the main functions and objectives are, what are the software
products selected for the implementation and how they can be deployed on a physical infrastructure.

The document is the first of a two issue series that will eventually result in the full definition of the SCP
architecture. In this first issue the objective is to define the basic functions required for porting the applications
to a cloud computing environment.

In the next release, the document will detail and develop some aspects regarding a “production ready
environment” (e.g. high availability issues, cloud platform management, monitoring, etc.) that are not fully
described or developed here.

D2.2.1 – Storm Clouds Platform Architectural Design Version 1.1

© Storm Clouds 2014 Page 31 of 34

Appendix A – OpenStack Configuration File Example
This annex reports an excerpt of an OpenStack configuration file:

[DEFAULT]

Default log level is INFO

verbose and debug has the same result.

One of them will set DEBUG log level output

debug = False

verbose = False

Where to store Neutron state files. This directory must be

writable by the

user executing the agent.

state_path = /var/lib/neutron

Where to store lock files

lock_path = $state_path/lock

log_format = %(asctime)s %(levelname)8s [%(name)s] %(message)s

log_date_format = %Y-%m-%d %H:%M:%S

use_syslog -> syslog

log_file and log_dir -> log_dir/log_file

(not log_file) and log_dir ->

log_dir/{binary_name}.log

use_stderr -> stderr

(not user_stderr) and (not log_file) -> stdout

publish_errors -> notification system

use_syslog = False

syslog_log_facility = LOG_USER

use_stderr = True

log_file =

log_dir =

publish_errors = False

Address to bind the API server

bind_host = 0.0.0.0

Port the bind the API server to

bind_port = 9696

:...

Version 1.1 D2.2.1 – Storm Clouds Platform Architectural Design

Page 32 of 34 © Storm Clouds 2014

References

[1] "Storm Clouds - Project Web Site," [Online]. Available: http://stormclouds.eu/. [Accessed July 2014].

[2] "Storm Clouds Project - European Commission Project Page," [Online]. Available:
http://ec.europa.eu/digital-agenda/en/storm-clouds-project-cloud-public-services. [Accessed July
2014].

[3] "Surfing Towards the Opportunity of Real Migration to CLOUD-based public Services," STORM CLOUDS
Consortium, November 2013.

[4] Consonni, Marco;Panuccio, Pasquale, "Storm Clouds Project: D 2.1 - Storm Clouds Platform –
Requirements and Specification," STORM CLOUDS Project, 2014.

[5] "OpenStack Project," [Online]. Available: http://openstack.org. [Accessed June 2014].

[6] "Cloud Foundry - Community Main Page," [Online]. Available: http://cloudfoundry.org/index.html.
[Accessed July 2014].

[7] "MySQL - Main Page," [Online]. Available: http://www.mysql.com/. [Accessed July 2014].

[8] "PostgreSQL - Main Page," [Online]. Available: http://www.postgresql.org/. [Accessed July 2014].

[9] "Zabbix - Main Page," [Online]. Available: https://www.zabbix.org/wiki/Main_Page. [Accessed July
2014].

[10] "Nagios - Main Page," [Online]. Available: http://www.nagios.org/. [Accessed July 2014].

[11] "Dnsmasq," [Online]. Available: http://www.thekelleys.org.uk/dnsmasq/doc.html. [Accessed July 2014].

[12] "OpenStack Cloud Administrator Guides," [Online]. Available: http://docs.openstack.org/admin-guide-
cloud/content/index.html. [Accessed July 2014].

[13] "django project page," [Online]. Available: https://www.djangoproject.com/. [Accessed July 2014].

[14] "Apache HTTP Server Project - Main Page," [Online]. Available: https://httpd.apache.org/. [Accessed
July 2014].

[15] "Representational state transfer - Wikipedia Page," [Online]. Available:
http://en.wikipedia.org/wiki/Representational_state_transfer. [Accessed July 2014].

[16] "OpeStack Documentation - Main Page," [Online]. Available: http://docs.openstack.org/. [Accessed July
2014].

[17] "OpenStack Hypervisor Support Matrix," [Online]. Available:
https://wiki.openstack.org/wiki/HypervisorSupportMatrix. [Accessed July 2014].

[18] "Kernel Based Virtual Machine - Main Page," [Online]. Available: http://www.linux-
kvm.org/page/Main_Page. [Accessed July 2014].

[19] "Kernel-based Virtual Machine - Wikipedia Page," [Online]. Available:
http://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine#Licensing. [Accessed July 2014].

[20] "OpenStack Cinder Support Mitrix," [Online]. Available:
https://wiki.openstack.org/wiki/CinderSupportMatrix. [Accessed July 2014].

[21] "tgt project - Linux SCSI target framework," [Online]. Available: http://stgt.sourceforge.net/. [Accessed
July 2014].

[22] "RFC 3720 - Internet Small Computer Systems Interface (iSCSI)," [Online]. Available:
http://tools.ietf.org/html/rfc3720. [Accessed July 2014].

[23] "LVM2 Resource Page," [Online]. Available: https://sourceware.org/lvm2/. [Accessed July 2014].

D2.2.1 – Storm Clouds Platform Architectural Design Version 1.1

© Storm Clouds 2014 Page 33 of 34

[24] "tgtd Manual Pages," [Online]. Available: http://stgt.sourceforge.net/manpages/tgtd.8.html. [Accessed
July 2014].

[25] "Logical Volume Manager (Linux) - Wikipedia Page," [Online]. Available:
http://en.wikipedia.org/wiki/Logical_Volume_Manager_%28Linux%29. [Accessed July 2014].

[26] "OpenStack Cloud Administrator Guide - Networking Plug-In Architecture," [Online]. Available:
http://docs.openstack.org/admin-guide-cloud/content/section_plugin-arch.html.

[27] "IPTABLES - Linux Manual Page," [Online]. Available: http://ipset.netfilter.org/iptables.man.html.
[Accessed July 2014].

[28] "Open vSwitch - An Open Virtual Switch," [Online]. Available: http://openvswitch.org/. [Accessed July
2014].

[29] "iptables - Wikipedia Page," [Online]. Available: http://en.wikipedia.org/wiki/Iptables. [Accessed July
2014].

[30] "Open vSwitch - Wikipedia Page," [Online]. Available: http://en.wikipedia.org/wiki/Open_vSwitch.
[Accessed July 2014].

[31] "iptables - free code download page," [Online]. Available: http://freecode.com/projects/iptables/.
[Accessed July 2014].

[32] "OpenStack Installation Guide for Ubuntu 12.04/14.04 (LTS)," [Online]. Available:
http://docs.openstack.org/icehouse/install-guide/install/apt/content/. [Accessed July 2014].

[33] "OpenStack High Availability Guide," [Online]. Available: http://docs.openstack.org/high-availability-
guide/content/index.html. [Accessed July 2014].

[34] "Platform as a Service - Wikipedia Page," [Online]. Available:
http://en.wikipedia.org/wiki/Platform_as_a_service. [Accessed July 2014].

[35] "VMware Delivers Cloud Foundry, The Industry’s First Open PaaS," VMware, [Online]. Available:
http://www.vmware.com/company/news/releases/cloud-foundry-apr2011.html. [Accessed July 2014].

[36] "Pivotal Moves to Establish Open Governance Model for Cloud Foundry," [Online]. Available:
https://www.gopivotal.com/platform-as-a-service/cloud-foundry-foundation. [Accessed July 2014].

[37] "Pivotal Names Eight Additional Organizations that Intend to Join the Cloud Foundry Foundation,"
[Online]. Available: https://www.gopivotal.com/platform-as-a-service/press-release/cloud-foundry-
foundation. [Accessed July 2014].

[38] "Operating system–level virtualization," [Online]. Available:
http://en.wikipedia.org/wiki/Operating_system-level_virtualization. [Accessed July 2014].

[39] "Warder - Description Page," [Online]. Available:
http://docs.cloudfoundry.org/concepts/architecture/warden.html. [Accessed July 2014].

[40] "Control Groups - Description Page," [Online]. Available:
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt. [Accessed July 2014].

[41] "Eclipse Project Web Site," [Online]. Available: http://www.eclipse.org/. [Accessed July 2014].

[42] "Maven Project Web Siste," [Online]. Available: http://maven.apache.org/). [Accessed July 2014].

[43] "Gradle Project Web Site," [Online]. Available: http://www.gradle.org/). [Accessed July 2014].

[44] "PostgreSQL License," [Online]. Available:
http://wiki.postgresql.org/wiki/FAQ#What_is_the_license_of_PostgreSQL.3F. [Accessed July 2014].

[45] "STORM CLOUDS Consortium," [Online]. Available: http://stormclouds.eu/?page_id=25. [Accessed July
2014].

Version 1.1 D2.2.1 – Storm Clouds Platform Architectural Design

Page 34 of 34 © Storm Clouds 2014

