

Project Acronym: STORM CLOUDS

Grant Agreement number: 621089

Project Title: STORM CLOUDS – Surfing Towards the Opportunity of Real Migration to CLOUD-based public
Services

Legal Notice and Disclaimer

This work was partially funded by the European Commission within the 7th Framework Program in the context of the CIP
project STORM CLOUDS (Grant Agreement No. 621089). The views and conclusions contained here are those of the
authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed
or implied, of the STORM CLOUDS project or the European Commission. The European Commission is not liable for any use
that may be made of the information contained therein.

The Members of the STORMS CLOUDS Consortium make no warranty of any kind with regard to this document, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Members of the
STORMS CLOUDS Consortium shall not be held liable for errors contained herein or direct, indirect, special, incidental or
consequential damages in connection with the furnishing, performance, or use of this material.

© STORMS CLOUDS Consortium 2014

D2.3.3

Storm Clouds Platform Implementation Status Report

Workpackage: WP2

Version: 0.3

Date: 23/09/2015

Status: WP leader accepted

Dissemination Level: PUBLIC

Nature: REPORT

Editor: Marco Consonni (Hewlett Packard Italiana S.r.l.)

Authors: Marco Consonni (Hewlett Packard Italiana S.r.l), Andrea Milani (Hewlett Packard Italiana S.r.l)

Reviewed by: Alkiviadis Giannakoulias (European Dynamics)

Version 1.0 D2.3.3 – Storm Clouds Platform Implementation Status Report

Page 2 of 19 © Storm Clouds 2015

Version Control
Modified by Date Version Comments

Marco Consonni 15/8/2015 0.1 First draft

Alkiviadis Giannakoulias 21/9/2015 0.2 WP Internal Review

Marco Consonni

Andrea Milani

23/9/2015 0.3 Ready for Project Coordinator Review

D2.3.3 – Storm Clouds Platform Implementation Status Report Version 1.0

© Storm Clouds 2015 Page 3 of 19

Executive Summary
Surfing Towards the Opportunity of Real Migration to Cloud-based public Services (STORM CLOUDS) is a
project partially funded by the European Commission within the 7th Framework Program in the context of the
Capital Improvement Plan (CIP) project (Grant Agreement No. 621089). The project has the objective of
exploring the shift to a cloud-based paradigm for providing services that Public Authorities (PAs) currently
implement with more traditional Information Technology (IT) deployment models. The defines guidelines on
moving application to cloud computing and is based on direct experimentation with pilot projects conducted in,
at least, the cities participating to the consortium [1].

Work Package 2 (WP2) delivers Storm Clouds Platform (SCP), a cloud computing platform for hosting
application services. SCP implements Infrastructure as a Service (IaaS) functions, Platform as a Service (PaaS)
functions as well as other features (Database Layer, Monitoring Layer, etc.) that significantly facilitate the
deployment of applications in a cloud environment.

This document is the third issue of the iterative deliverable “Storm Clouds Platform - Implementation Status
Report” that describes the current status of the SCP providing technical details on the actual implementation
with particular emphasis on implementation of custom components, on top of off-the-shelf products, for the SCP
automated deployment.

Version 1.0 D2.3.3 – Storm Clouds Platform Implementation Status Report

Page 4 of 19 © Storm Clouds 2015

Table of Contents
Version Control ... 2
Executive Summary .. 3
Table of Contents ... 4
Abbreviations .. 5
1 Current Implementation Status .. 6
2 SCP Deployment Tools .. 8

2.1 SCP Stack .. 8
2.2 DRBD .. 13
2.3 PostgreSQL ... 13
2.4 MySQL ... 14
2.5 Zabbix ... 14
2.6 CloudFoundry ... 15
2.7 Cluster .. 15
2.8 Miscellaneous Scripts .. 16

3 Summary and Conclusions .. 18
References ... 19

D2.3.3 – Storm Clouds Platform Implementation Status Report Version 1.0

© Storm Clouds 2015 Page 5 of 19

Abbreviations
Acronym Description

CLI Command Line Interface

CIDR Classless Inter-Domain Routing

CIP Capital Improvement Plan

CIP-PSP See CIP and PSP

DB Data Base

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DOW Description of Work

FP7 Framework Program 7

GB Gigabyte

GUI Graphical User Interface

HOT Heat Template Language

IaaS Infrastructure as a Service

IT Information Technology

N/A Not Available or Not Applicable

PA Public Authority

PaaS Platform as a Service

PDF Portable Document Format

PSP Policy Support Program

SCP STORM Cloud Platform

SME Small and Medium Enterprise

TBD To Be Defined

TBW To Be Written

URL Uniform Resource Locator

WP Work Package

YAML YAML Ain't Markup Language

Version 1.0 D2.3.3 – Storm Clouds Platform Implementation Status Report

Page 6 of 19 © Storm Clouds 2015

1 Current Implementation Status
Storm Cloud Platform (SCP) is deployed in two forms: SCP@HP and SCP@Enter. The former is hosted on
physical infrastructure housed at HP’s premises and is mainly used for development and testing purposes; the
latter is implemented using services made available by a public cloud operator (Enter S.r.l.
http://www.enterpoint.it) that provides IaaS services based on OpenStack.

The following table briefly summarizes the evolution of the SCP throughout the project milestones:

MILESTONE TITLE NOTES

M6 IaaS and Basic DbaaS SCP@HP

 IaaS services, Object Storage Excluded

 DB Layer - Basic Functionality (no HA)
SCP@Enter

 IaaS Fully Implemented

M12 Backup and Basic Monitoring SCP@HP

 IaaS - Object Storage Implemented

 Monitoring – Basic Functionality (no HA)
SCP@Enter

 IaaS Fully Implemented

 Monitoring – Basic Functionality (no HA)

M20 High Availability DB Layer,
Monitorig Services, PaaS

SCP@HP

 IaaS Fully Implemented

 DB Layer Fully Implemented

 Monitoring Fully Implemented

 PaaS Fully Implemented

 Jump Start Station Fully Implemented
SCP@Enter

 IaaS Fully Implemented

 DB Layer Fully Implemented

 Monitoring Fully Implemented

 PaaS Fully Implemented

 Jump Start Station Fully Implemented

able 1-1 Storm Clouds Platform Evolution

The table reads as follows:

 MILESTONE: delivery date;

 TITLE: brief title summarizing the implementation stage

 NOTES: more detailed description of the implementation status for the two SCP instances.

As shown above, the first two delivery phases were mostly dedicated to the implementation of the IaaS platform
services on SCP@HP; for this reason the two previous issues of this document [2], [3] describe the hardware
selected for the implementation and how OpenStack has been deployed on that. This information will not be
reported here but the interested readers are invited to refer to these versions.

In the latest phase the activities have been focused on implementing SCP services like DB Layer, Monitoring
Layer, PaaS functions, etc. As explained in [4], these services are deployed “on-top” of the IaaS Layer that
provides the computational resources (e.g. VMs, virtual volumes, virtual network objects, etc.) for running the
software selected for the implementation. These services can be collectively called as over-cloud services for
emphasizing the fact that they are implemented and run using “objects” made available by the Infrastructure
as a Service (IaaS) Layer.

http://www.enterpoint.it/

D2.3.3 – Storm Clouds Platform Implementation Status Report Version 1.0

© Storm Clouds 2015 Page 7 of 19

This concept is summarized by the picture showing the logical view of the SCP Overall Architecture [4]1:

Figure 1 1 - Storm Clouds Platform - Overall Architecture

The creation of infrastructural objects on OpenStack has been automated using Heat, the OpenStack
orchestration engine [5], used for deploying the over-cloud services. This practice, which has already been
applied for the creation of second version of the “Cloud Application Catalogue” [6], results in the production of
software scripts that, in addition to being tools used for activating SCP services in the IaaS platform, are also
project deliverables documenting how to arrange IaaS objects as well as install and configure software
packages on the virtual machines (VMs) in order to deliver the required functions.

1 The logical view of the Overall SCP Architecture has been slightly modified for reflecting the current state of the art.

Version 1.0 D2.3.3 – Storm Clouds Platform Implementation Status Report

Page 8 of 19 © Storm Clouds 2015

2 SCP Deployment Tools
This chapter describes the tools for deploying SCP over-cloud components.

For each tool, it provides the following information:

 Name: the name of the tool;

 Languages: the programming language(s) used for implementing the tool;

 Description: a description of the tool;

 Input: input parameters;

 Output: output values.

The tools are implemented with the following scripting languages:

 YAML (Heat): used for creating IaaS objects using OpenStack Heat;

 Bash Shell: used both for configuring SCP@HP and for configuring the VMs created through YAML
(heat) scripts.

2.1 SCP Stack

This section describes the Heat script for creating the SCP over-cloud services.

Name SCP.yaml

Languages Yaml (heat script)

Description This script creates all the IaaS objects required for hosting and supporting the STORM cloud
applications:

- Network Objects;

- DB Layer Objects;

- Monitoring Layer Objects;

- Platform as a Service Objects;

- Jump-Start Station Objects.

As a general rule, all the Virtual Machine (VM) objects install Ubuntu Server 14.04.3 LTS,
Trusty Tahr [7].

Network Objects
These objects represent the networking environment where both the SCP over-cloud services
and the application services run2.
The following picture shows the network objects created by the script:

2 The network layout created by this script supersede the one in [6].

D2.3.3 – Storm Clouds Platform Implementation Status Report Version 1.0

© Storm Clouds 2015 Page 9 of 19

SCP-Network (represented by the orange thick line) is the private network to which all SCP
over-cloud services are connected. It supports addresses belonging to subnet 10.0.0.0/24
(IP address range reserved for private networks [8]) and provides DHCP service. An IP
address subrange (by default addresses from 10.0.0.1 to 10.0.0.127) is reserved for static
IP allocation. The reason for reserving a range of IP addresses for static allocation is that
some SCP services are themselves implemented as VMs (for example the DB layer) and
assigning them a static IP address prevents the need for a local DNS service. Access to those
services is through ‘well-known’ IP addresses.
Application-Network (represented by the green thick line) is the private network to which
VMs hosting the application services are connected. It supports addresses belonging to
subnet 10.10.0.0/24 and provides DHCP service. An IP address subrange (by default
addresses from 10.10.0.1 to 10.10.0.127) is reserved for static IP allocation.
SCP-Router (represented by the small black square) connects the two networks to each other
and to the external provider network (represented by the blue thick line).
The provider network, being the representation of the network for accessing Internet, is not
created by the script and must be made available by the OpenStack administrator.

DB Layer Objects
This is a set of objects implementing the DB Layer services. It is an active-passive cluster
composed of three VMs arranged as described in [4] (see Appendix A - Active-Passive
Cluster on Linux Platform). Two VMs – namely the active and the stand-by nodes - host the
DB engine; the third VM – the quorum node – is used for cluster voting purposes only. In
order to minimize the resources used for the implementation, both MySQL and PostgreSQL
DB engines are hosted in the three-node cluster. In case of workload increase, the DB Layer
can be easily adapted for deploying MySQL and PostgreSQL on different three-node
clusters as well as for creating multiple copies of three-node clusters hosting MySQL,
PostgreSQL or both.

DBNode1 is one of the two nodes in the cluster hosting the DB engines. When the cluster is
deployed, this VM is configured as the active (or master) node, actually providing the
database service for the applications.
The VM installs the following software packages:

- DRBD Ver. 8.4.3
- Corosync Ver. 2.3.3
- Pacemaker Ver. 1.1.10
- MySQL Server Ver. 5.5.44 (with InnoDB)
- PostgreSQL Server Ver. 9.3.9
- Zabbix Agent Ver. 2.4.6 (see Monitoring Layer)

The two DB engines are configured for storing data on DBVolume1 (see below).

DBNode2 is similar to DBNode1 but, when the cluster is deployed, the VM is configured as
the stand-by (or slave) node. Should DBNode1 fail, the cluster software automatically
promotes DBNode2 to master. In this way, DB services are delivered without interruption.
The node is equipped with the same software installed on DBNode1 and stores database
data on DBVolume2 (see below).

DBNodeQ is the quorum node of the cluster.
It is equipped with the same software installed on DBNode1 and DBNode2 albeit the DB
services are disabled. In addition, the quorum node hosts DB administration software
packages providing a web-based GUI:

- phpmyadmin Ver. 4.0.10 (for administering MySQL);
- phppgadmin Ver. 5.1 (for administering PostgreSQL);

DBVolume1 is the external virtual volume where DBNode1 stores the database data.
The reason for using an external volume instead of the VM internal volumes are:

- the size of the volume is independent on the ‘flavor3’ of the VM allowing more
flexibility during the deployment;

3 OpenStack flavors specify the amount of resources (e.g. RAM size, boot disk size, number of virtual CPUs, etc.) allocated
when a VM (or instance) is created

Version 1.0 D2.3.3 – Storm Clouds Platform Implementation Status Report

Page 10 of 19 © Storm Clouds 2015

- the lifecycle of external volumes is independent of the lifecycle of the VM the volume
is connected to (e.g. the VM can be destroyed while the volume is kept)

- the virtualization technology used for implementing virtual volumes at IaaS layer
level (i.e. OpenStack) usually optimizes the usage of resources with benefits both in
terms of performance and cost (e.g. the price per GB of a IaaS block storage service
is cheaper than the corresponding price per GB allocated in the VM).

DBVolume2 is similar to DBVolume1 but used by DBNode2.

Notes:

- The DB services are available at the well-known IP address 10.0.0.10.
- DBNode1and DBNode2 should be deployed on two different physical servers in

order to prevent a failure at the physical level from compromising the cluster
functionality. In this perspective they can be deployed on two different availability
zones4.

- DBVolume1 and DBVolume2 should be deployed on two different availability
zones.

- The DB administration web interfaces for the databases are available at the well-
known URLs:

o http://10.0.0.13/phpmyadmin (MySQL web administration);
o http://10.0.0.13/phppgadmin (PostgreSQL web administration);

Monitoring Layer Objects
This is the set of objects implementing the Monitoring Layer services.
It is an active-standby cluster composed of three VMs: two of them host the Zabbix services
– namely Zabbix server and Zabbix Web Front End – the third is the quorum node.
Zabbix requires a database engine for storing data.
In SCP, the database of the Monitoring Layer is hosted on the DB Layer.
The following paragraphs describe the most relevant objects in the cluster.

ZabbixNode1 is one of the two nodes of the active-standby Zabbix cluster. When SCP is
deployed, it is configured as the active node. The VM installs the following software
packages:

- Zabbix Server MySQL Ver. 2.4.6
- Zabbix Frontend php Ver. 2.4.6
- OpenStack Swift CLI Ver. 2.0.3
- Duplicity Ver. 0.6.23

ZabbixNode2 is similar to ZabbixNode1 but configured as the standby node when SCP is
deployed.

ZabbixNodeQ is the quorum node of the cluster; it is equipped with the same software
installed on ZabbixNode1 and ZabbixNode2 albeit the monitoring services are disabled.

Notes:

- ZabbixNode1 and ZabbixNode2 should be deployed on two different physical
servers in order to preserve the cluster functionality in case of hardware failure. For
this reason they should be deployed on two different availability zones (see also
DB Layer description).

- Zabbix nodes install Swift CLI and Duplicity for implementing the database backup
according to the guidelines defined in [4] (see par. “2.4 Data Back-Up Using the
IaaS Platform Services”).

- The Zabbix server as well as the Zabbix Frontend are both available at well-known
IP address 10.0.0.20.

- Albeit Zabbix is able to monitor nodes without necessarily requiring the installation
of the Zabbix agent, using the agent is strongly recommended. For this reason, the
other nodes in the SCP are equipped with such a piece of software.

4 For a brief description of OpenStack availability zones, see [4] at paragraph “2.3.1.2 Availability Zones”.

http://10.0.0.13/phpmyadmin
http://10.0.0.13/phppgadmin

D2.3.3 – Storm Clouds Platform Implementation Status Report Version 1.0

© Storm Clouds 2015 Page 11 of 19

Platform as a Service Objects
These are the objects for implementing the Platform as a Service component based on
CloudFoundry [9]. As described in the SCP architecture [4], the deployment of CloudFoundry
is based on BOSH [10], a free software deployment and lifecycle engine that can deploy
complex systems on several IaaS platforms, including OpenStack. BOSH creates IaaS objects
directly calling the IaaS API and orchestrating the deployment of a system. In this
perspective, the object created by the HOT YAML script described here is only a node where
BOSH is installed, configured and run; the creation of the other IaaS objects required for
deploying CloudFoundry is actually performed by the BOSH node and not by the SCP.yaml
script.
The following picture summarizes how this works:

BOSHNode is the VM for orchestrating the deployment of CloudFoundry. The VM installs the
following software packages:

- BOSH CLI Ver. 1.3072.0
- CloudFoundry Software Distribution Package Ver. 2.10
- Zabbix Agent Ver. 2.4.6

CF-HAProxyNode, CF-RunnerNode, CF-ControllerNode: these nodes collectively
implement the CloudFoundry platform. They are created by BOSHNode that also installs the
required software components taken from the CloudFoundry Software Distribution Package.

Notes:

- BOSHNode is configured for connecting CF-HAProxyNode and CF-RunnerNode to
Application-Network because they are used for accessing and hosting application
services.

- CF-ControllerNode is connected to SCP-Network
- The CloudFoundry API terminator, deployed on CF-HAProxy, is made available at

the well-known IP address 10.10.0.10.

Jump-Start Station
It is a single Virtual Machine designed for managing and administering both the over-cloud
SCP services and the applications hosted by the SCP. It is equipped with the OpenStack CLI
packages for interoperating with OpenStack.

Input The script receives several input parameters for facilitating the deployment of the SCP over-
cloud services in different IaaS platforms (e.g. SCP@HP and SCP@Enter).
The parameters are organized in groups gathering functional related information.

Public_Network_Parameters
- Public_Network: name of the public network provided by the OpenStack administrator
- Public_DNS_IP: IP address of the DNS service provided by the OpenStack administrator

SCP_Network_Parameters
- SCP_Subnet_1stIP: first IP address
- SCP_Subnet_CIDR: IP address range in CIDR notation

Version 1.0 D2.3.3 – Storm Clouds Platform Implementation Status Report

Page 12 of 19 © Storm Clouds 2015

- SCP_Gateway_IP: IP address of the network gateway
- SCP_1stDHCPIP: first IP address allocated via DHCP
- SCP_LastDHCPIP: last IP allocated via DHCP

Application_Network_Parameters
- Application_Subnet_1stIP: first IP address
- Application_Subnet_CIDR: IP address range in CIDR notation
- Application_Gateway_IP: IP address of the network gateway
- Application_1stDHCPIP: first IP address allocated via DHCP
- Application_LastDHCPIP: last IP allocated via DHCP

DB_Server_Parameters
- DB_Virtual_IP: well-known IP address of the DB service
- DB_Node1_IP: fixed IP address of DBNode1
- DB_Node2_IP: fixed IP address of DBNode2
- DB_NodeQ_IP: fixed IP address of DBNodeQ
- DB_Node_Image: name of the VM image to boot from
- DB_Node_Flavor: OpenStack flavor for creating DBNode instances
- DB_Quorum_Node_Flavor: OpenStack flavor for creating DBNodeQ instance
- DBNode1_Availability_Zone: availability zone of DBNode1
- DBNode2_Availability_Zone: availability zone of DBNode2
- DBNodeQ_Availability_Zone: availability zone of DBNodeQ
- DB_Volume_Size: size in GB of the DB volumes
- DBVolume1_Availability_Zone: availability zone of DBVolume1
- DBVolume2_Availability_Zone: availability zone of DBVolume2
- DB_Admin_User: database administrator’s username
- DB_Admin_Pass: database administrator’s password

Zabbix_Parameters
- Zabbix_Virtual_IP: well-known IP address of the Zabbix service
- Zabbix_Node1_IP: fixed IP address of ZabbixNode1
- Zabbix_Node2_IP: fixed IP address of ZabbixNode2
- Zabbix_NodeQ_IP: fixed IP address of ZabbixNodeQ
- Zabbix_Node_Image: name of the VM image to boot from
- Zabbix_Node_Flavor: OpenStack flavor for creating ZabbixNode instances
- Zabbix_DB_Name: name or IP address where MySQL database service is available
- ZabbixNode1_Availability_Zone: availability zone of ZabbixNode1
- ZabbixNode2_Availability_Zone: availability zone of ZabbixNode2
- ZabbixNodeQ_Availability_Zone: availability zone of ZabbixNodeQ

CloudFoundry_Parameters
- CloudFoundry_Virtual_IP: well-known IP address of the CloudFoundry service

OpenStack_Parameters
- Key_Name: name of the private/public keypair used to boot/access the created instances
- OS_USERNAME: OpenStack account username
- OS_PASSWORD: OpenStack account password
- OS_TENANT_NAME: OpenStack tenant where the stack is deployed
- OS_AUTH_URL: OpenStack authentication service URL

Output None

The SCP Heat Template5 described above calls several bash shell scripts for installing and configuring the
software packages on the nodes. These scripts, often called configuration fragments, are organized in
functionally related groups and described in the following sections.

5 Heat Template is synonym for HOT script; a script, written in HOT (Heat Orchestration Template) language, interpreted
by OpenStack Heat.

D2.3.3 – Storm Clouds Platform Implementation Status Report Version 1.0

© Storm Clouds 2015 Page 13 of 19

2.2 DRBD

The following are the scripts for installing and configuring DRBD.

They work with the assumption that the synchronized volume is provided as an external OpenStack virtual
volume.

Name drbd_setup.sh

Languages Bash Shell

Description It installs and configures DRBD software for the active-standby cluster

Input __Node1_Name__: name of node 1
__Node2_Name__: name of node 2
__NodeQ_Name__: name of the quorum node
__ DRBD_Resource__: name of the DRBD resource to activate (external volume)
__ Volume_Mountpoint__: name of the mount point for the DRBD resource

Output None

Name drbd_master_configure.sh

Languages Bash Shell

Description It configures the node as DRBD master and performs the initial synchronization of DRBD
managed volumes (master and slave).

Input __DB_DRBD_Resource__: name of the DRBD resource
__DB_DRBD_Device__: name of the volume
__ Volume_Mountpoint__: name of the mount point for the DRBD resource

Output None

2.3 PostgreSQL

The following are the scripts for installing and configuring PostgreSQL database engine and phppgadmin, the
web based administration GUI.

Name postgresql_setup.sh

Languages Bash Shell

Description It installs and configures PostgreSQL software package

Input __DB_Directory__: name of the DB directory

Output None

Name postgresql_master_finalize.sh

Languages Bash Shell

Description It creates the PostgreSQL database directory and configures PostgreSQL engine
accordingly (note that the DB directory needs to be created on the master only because the
slave disk is automatically synchronized by DRBD)

Input __DB_Directory__: name of the DB directory
__DB_Admin_User: username for the DB administrator
__DB_Admin_Password: password for the DB administrator

Output None

Name phppgadmin_setup.sh

Languages Bash Shell

Description It installs and configures phppgadmin software package.

Input __Virtual_IP__: IP address where the PostgreSQL service is made available
__DB_Admin_User: username for the DB administrator
__DB_Admin_Password: password for the DB administrator

Output None

Version 1.0 D2.3.3 – Storm Clouds Platform Implementation Status Report

Page 14 of 19 © Storm Clouds 2015

2.4 MySQL

The following are the scripts for installing and configuring MySQL database engine and phpmyadmin, the web
based administration GUI.

Name mysql_setup.sh

Languages Bash Shell

Description It installs and configures MySQL database engine

Input __DB_Directory__: name of the DB directory
__DB_Root_Password__: the password for ‘root’ user (DB super-user)

Output None

Name mysql_master_finalize.sh

Languages Bash Shell

Description It finalizes the MySQL database installation on the master node (note that the finalization is
required for the master node only because the slave disk is automatically synchronized by
DRBD)

Input __DB_Admin_User: username for the DB administrator
__DB_Admin_Password: password for the DB administrator

Output None

2.5 Zabbix

The following are the scripts for installing Zabbix software package components.

The database creation, the server installation and configuration, the front-end installation and configuration are
all implemented as different scripts for improving flexibility and allowing deployments different from the one
implemented here.

Script zabbix-agent_setup.sh is supposed to be used on nodes that are under Zabbix monitoring.

Name zabbix-update.sh

Languages Bash Shell

Description It adds the Zabbix code repository to the list of code repositories to get code from when
submitting “apt-get install” commands.

Input None

Output None

Name zabbix-database_setup.sh

Languages Bash Shell

Description It creates the MySQL database for storing Zabbix data

Input __DB_Host__: IP address of the MySQL database service
__DB_Database__: name of the MySQL database
__DB_User__: username of the MySQL account
__DB_Password__: password of the MySQL account

Output None

Name zabbix-server_setup.sh

Languages Bash Shell

Name phpmyadmin_setup.sh

Languages Bash Shell

Description It installs and configures phpmyadmin software package.

Input __Virtual_IP__: IP address where the MySQL service is made available
__DB_Admin_User: username for the DB administrator
__DB_Admin_Password: password for the DB administrator

Output None

D2.3.3 – Storm Clouds Platform Implementation Status Report Version 1.0

© Storm Clouds 2015 Page 15 of 19

Description It installs and configures the Zabbix server software package. It requires the credentials for
accessing an already deployed and configured MySQL service

Input __DB_Host__: IP address of the MySQL database service
__DB_Database__: name of the MySQL database
__DB_User__: username of the MySQL account
__DB_Password__: password of the MySQL account

Output None

Name zabbix-frontend_setup.sh

Languages Bash Shell

Description It installs and configures the Zabbix web front-end software package. It requires the
credentials for accessing an already deployed and configured MySQL service

Input __DB_Host__: IP address of the MySQL database service
__DB_Database__: name of the MySQL database
__DB_User__: username of the MySQL account
__DB_Password__: password of the MySQL account

Output None

Name zabbix-agent_setup.sh

Languages Bash Shell

Description It installs and configures Zabbix agent for allowing Zabbix server to monitor a VM

Input __Zabbix_Server_IP__: IP address of the Zabbix server

Output None

2.6 CloudFoundry

This section describes the scripts for installing and configuring CloudFoundry.

As described above, CloudFoundry is actually deployed by BOSH, therefore we need just a single script for
preparing the BOSHNode.

Name cloudfoundry_boshsetup.sh

Languages Bash Shell

Description It installs, configures and runs the BOSH software packages.

After that, it calls the scripts for deploying CloudFoundry.

As BOSH directly interacts with OpenStack API, the script requires the credentials for
accessing OpenStack IaaS services.

Input __Service_IP__: IP address where the CloudFoundry services are available
__OS_USERNAME__: OpenStack account username
__OS_PASSWORD__: OpenStack account password
__OS_TENANT_NAME__: OpenStack tenant name
__OS_AUTH_URL__: OpenStack authentication service URL

Output None

2.7 Cluster

The following scripts install and configure the software for implementing an active-standby cluster implemented
using Pacemaker and Corosync.

Some scripts (namely cluster-node_initialize.sh, cluster_install.sh and cluster_quorum_standby.sh) are reusable
independently of the services hosted by the cluster; others (dbcluster_master_configure.sh and
zabbixcluster_master_configure.sh) are specifically designed for the function (i.e. services) delivered by the
cluster.

The scripts presented in this section have been implemented adapting examples found on the Internet ([11],
[12] and [13]).

Name cluster-node_initialize.sh

Languages Bash Shell

Description It performs a basic active-standby cluster node initialization.

Version 1.0 D2.3.3 – Storm Clouds Platform Implementation Status Report

Page 16 of 19 © Storm Clouds 2015

Input __Node1_IP__: IP address of node 1 (master node)
__Node2_IP__: IP address of node 2 (slave node)
__NodeQ_IP__: IP address of quorum node
__Virtual_IP__: Virtual IP address where the cluster services are available
__Node1_Name__: name of node 1
__Node2_Name__: name of node 2
__NodeQ_Name__: name of quorum node

Output None

Name cluster_install.sh

Languages Bash Shell

Description It installs and configures the cluster management software (Pacemaker and Corosync).

Input __Cluster_Subnet__: the subnet

Output None

Name cluster_quorum_standby.sh

Languages Bash Shell

Description It switches the quorum node to standby mode

Input None

Output None

Name db_cluster_master_configure.sh

Languages Bash Shell

Description It configures the database active-standby cluster defining the controlled resources (services),
the dependencies and the colocation. It also promotes the calling node to active state.

Input __Virtual_IP__: Virtual IP address where the cluster services are available
__DB_DRBD_Device__: name of the volume
__DB_DRBD_Resource__: name of the DRBD resource
__DB_Directory__: name of the DB directory

Output None

Name zabbix_cluster_master_configure.sh

Languages Bash Shell

Description It configures the Zabbix active-standby cluster defining the controlled resources (services),
the dependencies and the colocation. It also promotes the calling node to active (or master).

Input __Virtual_IP__: Virtual IP address where the cluster services are available

Output None

2.8 Miscellaneous Scripts

The following scripts implement some general purpose functions and can be reused for the deployment of the
applications hosted by SCP.

Name aptget-update.sh

Languages Bash Shell

Description It downloads the package lists from the repositories and "updates" them to get information
on the newest versions of packages and their dependencies.

Input None

Output None

Name openstack-cli_install.sh

Languages Bash Shell

Description It installs all the OpenStack CLI packages for allowing the VM to interoperate with the
hosting OpenStack cloud, if needed. As an example, Duplicity uses “python-swiftclient”
package for saving back-up files in the Object Storage Service (see below)

D2.3.3 – Storm Clouds Platform Implementation Status Report Version 1.0

© Storm Clouds 2015 Page 17 of 19

Input None

Output None

Name duplicity_setup.sh

Languages Bash Shell

Description It installs all the software components required for performing back-up using Duplicity and
store the files in the OpenStack Object Storage. It requires the credentials for accessing the
underlying OpenStack IaaS cloud in order to access the Object Storage Service and save
the back-up files.

Input __OS_USERNAME__: OpenStack account username
__OS_PASSWORD__: OpenStack account password
__OS_TENANT_NAME__: OpenStack tenant name
__OS_AUTH_URL__: OpenStack authentication service URL

Output None

Version 1.0 D2.3.3 – Storm Clouds Platform Implementation Status Report

Page 18 of 19 © Storm Clouds 2015

3 Summary and Conclusions
This document has summarized the current state of the art of the Storm Cloud Platform (SCP) and described,
mostly from a technical point of view, the implementation of the services built on top of OpenStack IaaS,
collectively named over-cloud services. Over-cloud services are shared functions used for facilitating the
deployment of application services in a production-ready environment where non-functional yet fundamental
aspects like high availability, scalability and application management in general need to be addressed.
Database Layer implements database engines in high availability configuration, Monitoring Layer provides
services for monitoring applications, PaaS platform facilitates the deployment of web-based applications (e.g.
the programmer is not required to deal with infrastructural details such as VMs and is free to focuses on the
implementation of the application software.
Most of the effort has been focused on automating the deployment of the over-cloud services and implementing
reusable software for that purpose (HOT and Bash shell scripts). This document describes the technical details
of the software to date but, as is common practice in software development, we expect to modify the software
components in order to add new (unplanned but useful) features or refactor the code for improving the
modularity and the reusability. For this reason, this document will be updated accordingly in case of significant
modifications to the software resulting in new issues. Although new issues of the document were not originally
planned [1], we think that this document should always reflect the state-of-art of the platform, show the technical
evolution and capture the lessons learnt in the implementation.

D2.3.3 – Storm Clouds Platform Implementation Status Report Version 1.0

© Storm Clouds 2015 Page 19 of 19

References

[1] "Surfing Towards the Opportunity of Real Migration to CLOUD-based public Services," STORM CLOUDS
Consortium, November 2013.

[2] "D2.3.1 Storm Clouds Platform Implementation Status Report," STORM CLOUDS Consortium, 2014.

[3] "D2.3.2 Storm Clouds Platform Implementation Status Report," STORM CLOUDS Consortium, 2015.

[4] "D2.2.2 - Storm Clouds Platform Architectural Design," STORM CLOUDS Consortium, 2015.

[5] "OpenStack Heat - Wiki Page," [Online]. Available: https://wiki.openstack.org/wiki/Heat. [Accessed Jan
2015].

[6] "D2.4.2 Cloud Application Template Catalogue," STORM CLOUDS Consortium, 2015.

[7] "Ubuntu 14.04.2 LTS (Trusty Tahr)," [Online]. Available: http://releases.ubuntu.com/14.04/. [Accessed
June 2015].

[8] "RFC1918 - Address Allocation for Private Internets," The Internet Engineering Task Force (IETF®), Feb
1996. [Online]. Available: https://www.ietf.org/rfc/rfc1918.txt. [Accessed June 2015].

[9] "Cloud Foundry - Foundation Page," [Online]. Available: http://www.cloudfoundry.org/cloud-foundry-
foundation-launch.html. [Accessed Jan 2015].

[10] "Cloud Foundry - BOSH Page," [Online]. Available: http://docs.cloudfoundry.org/bosh/. [Accessed Jan
2015].

[11] T. Shaun , "High Availability with PostgreSQL and Pacemaker," 2012. [Online]. Available:
https://wiki.postgresql.org/images/0/07/Ha_postgres.pdf. [Accessed May 2015].

[12] "MySQL High Availability: Configuration and Deployment Guide," Oracle, September 2012. [Online].

[13] "High Availability setup for Zabbix 1.8 - 2.4," [Online]. Available:
https://www.zabbix.org/wiki/Docs/howto/high_availability. [Accessed June 2015].

