

Project Acronym: STORM CLOUDS

Grant Agreement number: 621089

Project Title: STORM CLOUDS – Surfing Towards the Opportunity of Real Migration to CLOUD-based public
Services

Legal Notice and Disclaimer

This work was partially funded by the European Commission within the 7th Framework Program in the context of the CIP
project STORM CLOUDS (Grant Agreement No. 621089). The views and conclusions contained here are those of the
authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed
or implied, of the STORM CLOUDS project or the European Commission. The European Commission is not liable for any
use that may be made of the information contained therein.

The Members of the STORMS CLOUDS Consortium make no warranty of any kind with regard to this document, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Members of the
STORMS CLOUDS Consortium shall not be held liable for errors contained herein or direct, indirect, special, incidental or
consequential damages in connection with the furnishing, performance, or use of this material.

© STORMS CLOUDS Consortium 2014

Deliverable D2.1

Storm Clouds Platform Requirements and Specification

Work Package: WP2

Version: 1.0

Date: 30/04/2014

Status: Project Coordinator Accepted

Dissemination Level: Public

Version 1.0 D2.1 – Storm Clouds Platform Requirements and Specification

Page 2 of 45 © Storm Clouds 2014

Authoring
Role Name Organisation

Edited by Marco Consonni Hewlett Packard Italiana

Author Marco Consonni Hewlett Packard Italiana

Author Pasquale Panuccio Hewlett Packard Italiana

Author Vincenzo Cultrera Hewlett Packard Italiana

Reviewed by Panagiotis Tsarchopoulos Aristotelio Panepistimio Thessalonikis

Reviewed by Julian Arroyo Alvarez Ayuntamiento de Valladolid

Reviewed by Agustin Gonzales-Quel Ariadna

Version Control
Modified by Date Version Comments

M. Consonni 03-03-2014 DRAFT ToC Insertion

M. Consonni 07-04-2014 0.1 Ready for the 1st Internal Review

M. Consonni 10-04-2014 0.2 Executive Summary and Summary and Conclusions,
added

M. Consonni 30-04-2014 1.0 Version 1.0

D2.1– Storm Clouds Platform Requirements and Specification Version 1.0

© Storm Clouds 2014 Page 3 of 45

Project Presentation
Surfing Towards the Opportunity of Real Migration to Cloud-based public Services (STORM CLOUDS) [1] is a
project partially funded by the European Commission within the 7th Framework Program in the context of the
Capital Improvement Plan (CIP) project (Grant Agreement No. 621089) [2].

The project has the objective of exploring the shift to a cloud-based paradigm for deploying services that
Public Authorities (PAs) currently provide using more traditional Information Technology (IT) deployment
models. In this context, the term "services" refers to applications, usually made available through Internet, that
citizens and/or public servants use for accomplishing some valuable task.

The project aims to define useful guidelines on how to implement the process of moving application to cloud
computing and is based on direct experimentation with pilot projects conducted in, at least, the cities
participating to the consortium.

STORM CLOUDS will also deliver a consolidated a portfolio of cloud-based services validated by citizens
and Public Authorities in different cities and, at the same time, general and interoperable enough to be
transferred and deployed in other European cities not taking part in the project. This portfolio will be mainly
created from applications and technologies delivered by other CIP Policy Support Program (CIP-PSP) and
Framework Program 7 (FP7) projects, as well as resulting from innovation efforts from Small and Medium
Enterprises (SMEs).

The project is lead by the following consortium:

Member Role/Responsibilities Short Name Country

Ariadna Servicios Informáticos, S.L. Co-ordinator ASI Spain

Hewlett Packard Italiana S.r.l. Participant HP Italy

EUROPEAN DYNAMICS Advanced Systems of
Telecommunications, Informatics and Telematics

Participant ED Greece

Research, Technology Development and Innovation,
S.L

Participant RTDI Spain

Aristotelio Panepistimio Thessaloniki Participant AUTH Greece

Alfamicro Sistemas de Computadores LDA Participant Alfamicro Portugal

Manchester City Council Participant Manchester United
Kingdom

Ayuntamiento de Valladolid Participant Valladolid Spain

City of Thessaloniki Participant Thessaloniki Greece

Câmara Municipal de Águeda Participant Águeda Portugal

For more information on the scope and objectives of the project, please refer to the Description of Work
(DOW) of the project [3].

Version 1.0 D2.1 – Storm Clouds Platform Requirements and Specification

Page 4 of 45 © Storm Clouds 2014

Executive Summary
Work Package 2 (WP2) of the Storm Clouds project is aimed at designing and implementing the reference
architecture for the Storm Clouds Platform (SCP), the cloud platform infrastructure for hosting application
services selected for being ported to cloud. SCP supplies computational resources that are allocated/de-
allocated on-demand following a “as-a-Service” cloud computing paradigm.

This document defines the requirements and specification for SCP and it is organized into the major sections
described below.

Section 1 describes the business context where the platform is used highlighting the business entities (A.K.A.
business actors) and their main roles and responsibilities. Section 2 is lists the applications candidate to be
ported to cloud during the project, providing some basic functional and technical information with the
objective of deriving requirements for the Storm Clouds Platform. There are several reasons for assessing the
candidate applications at this stage both technical and business-wise. For example, it is worth understanding
the kind of functions applications implement in order to find out if and how they can be reused in other
contexts. As a matter of fact, one of the objectives of the project is to “deliver a consolidated cloud-based
service portfolio [...omitted...] general and interoperable enough to be transferred and deployed in other
European cities”[3]. From the technical view point, the assessment provides important insights on the nature of
the proposed application services like the type of workload (e.g. on-line, batch, web-based, mobile, etc.),
indications on security issues, an estimation of the amount of resources required to run, etc. This information is
mainly gathered for designing a cloud platform that better fit the application requirements. Section 3 defines
the Storm Clouds Platform requirements and specification. It starts with a discussion of the National Institute
of Standard Technology (NIST) definition of cloud computing and tries to find what aspects are to be
addressed in the project. The reason for this exercise is that NIST provides a good baseline for discussing
about what cloud computing is and how to best use it, without proposing a “pre-canned” product-oriented
solution that is not in the objective of the project. Therefore, it’s worth “challenging” the NIST definitions with
the objective of eliciting requirements applicable to the project independently on the actual technical solutions
that will be implemented. The results of the exercise are arranged in the cloud platform functional
decomposition of the cloud platform (a logical model showing how the functions relate one another) and a list
of requirements. Section 5, Storm Project Methodological Framework, briefly reports some relevant
information about the Storm Clouds project framework in order to highlight aspects that have direct impact on
the design of the SCP. Section 5 summarizes the document topics and highlights the most relevant aspects for
the upcoming project activities.

D2.1– Storm Clouds Platform Requirements and Specification Version 1.0

© Storm Clouds 2014 Page 5 of 45

Table of Contents
Authoring.. 2
Version Control ... 2
Project Presentation ... 3
Executive Summary .. 4
Table of Contents ... 5
List of Figures .. 7
List of Tables ... 8
Abbreviations .. 9
1 Business Context ... 10

1.1 Storm Cloud Platform ... 10
1.2 Applications .. 10
1.3 End Users ... 11
1.4 Application Creators ... 11
1.5 Application Providers ... 11
1.6 Platform Provider .. 11
1.7 Infrastructure Provider .. 11
1.8 External Services ... 11

2 Application Service Assessment .. 12
2.1 Applications .. 12

2.1.1 Municipio de Águeda - Emissão de Plantas de Localização ... 12
2.1.2 Municipio de Águeda - Plano Director Municipal .. 13
2.1.3 Municipio de Águeda - HotSpot CMA .. 13
2.1.4 Municipio de Águeda - Lime Survey ... 14
2.1.5 Ariadna Servicios Informáticos - Co-Labora ... 15
2.1.6 Ariadna Servicios Informáticos – SEDOC ... 15
2.1.7 Ariadna Servicios Informáticos – SIMPLEXT ... 16
2.1.8 Manchester City Council - City Navigator ... 16
2.1.9 Ayuntamiento de Valladolid - Blue Parking Valladolid ... 17
2.1.10 Ayuntamiento de Valladolid - Ideol–Innobarómetro ... 18
2.1.11 Ayuntamiento de Valladolid – LocalGIS .. 18
2.1.12 Ayuntamiento de Valladolid - Urbanismo en Red – UeR ... 19
2.1.13 URENIO - Virtual City Tour ... 20
2.1.14 URENIO - Virtual City Marketplace .. 20
2.1.15 URENIO - Improve My City ... 21
2.1.16 URENIO - Sense the City ... 22
2.1.17 URENIO - Honolulu Answers .. 22
2.1.18 URENIO – OpenTripPlanner ... 23
2.1.19 URENIO – Crowdtilt .. 23
2.1.20 URENIO – LocalWiki .. 24
2.1.21 URENIO – OpenCivic.. 24
2.1.22 URENIO - We the People Petitions ... 25
2.1.23 RTDI - PLAY and STREAM .. 26

2.2 Assessment Results ... 26
3 Storm Clouds Platform Requirements and Specification .. 28

3.1 The NIST Definition of Cloud Computing .. 28
3.1.1 Cloud Computing Definition .. 28
3.1.2 Essential Characteristics ... 30
3.1.3 Deployment Models .. 32
3.1.4 Service Models .. 34

3.2 Storm Clouds Platform Functional Architecture .. 37
3.2.1 Access Layer ... 38
3.2.2 Service Layer ... 39
3.2.3 Virtualization Layer .. 39
3.2.4 Physical Layer .. 39
3.2.5 Cloud Management Tier .. 40

3.3 List of Requirements .. 40
4 Storm Project Methodological Framework ... 43
5 Summary and Conclusions .. 44

Version 1.0 D2.1 – Storm Clouds Platform Requirements and Specification

Page 6 of 45 © Storm Clouds 2014

References ... 45

D2.1– Storm Clouds Platform Requirements and Specification Version 1.0

© Storm Clouds 2014 Page 7 of 45

List of Figures
Figure 1-1 – Business Context ... 10
Figure 3-1 – Cloud Computing Definition ... 28
Figure 3-2 – Cloud Computing Deployment Model – Control and Visibility ... 32
Figure 3-3 – Virtualization Layer ... 37
Figure 3-4 – Storm Clouds Platform Functional Architecture... 38

Version 1.0 D2.1 – Storm Clouds Platform Requirements and Specification

Page 8 of 45 © Storm Clouds 2014

List of Tables
Table 3-1 – Cloud Computing Essential Characteristics ... 32
Table 3-2 – Cloud Computing Deployment Models ... 34
Table 3-3 – Cloud Computing Service Types .. 36
Table 3-4 – Software Stack and Provider/Consumer Scope of Control ... 37
Table 3-5 – Storm Clouds Platform Requirements .. 42
Table 4-1 – Number of Concurrent Applications in the Cloud ... 43

D2.1– Storm Clouds Platform Requirements and Specification Version 1.0

© Storm Clouds 2014 Page 9 of 45

Abbreviations
Acronym Description

API Application Programming Interface

CLI Command Line Interface

DBMS DataBase Management System

DNS Domain Name System

DRDB Distributed Replicated Block Device

ERP Enterprise Resource Planning

GIS Geographic Information System

GRE Generic Routing Encapsulation

GTFS General Transit Feed Specification

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

KML Keyhole Mark-up Language

KVM Kernel-based Virtual Machine

IaaS Infrastructure as a Service

IT Information Technology

LXC LinuX Containers

NIST National Institute of Standards and Technology

N/A Not Available

PC Personal Computer

PaaS Platform as a Service

REST REpresentational State Transfer

RSS Really Simple Syndication

SaaS Software as a Service

SSL Secure Socket Layer

TCP-IP Transmission Control Protocol – Internet Protocol (suite)

URL Uniform Resource Locator

VM Virtual Machine

VPN Virtual Private Network

WLAN Wireless Local Area Network

Version 1.0 D2.1 – Storm Clouds Platform Requirements and Specification

Page 10 of 45 © Storm Clouds 2014

1 Business Context
The following diagram depicts the context where the Storm Clouds Platform is used and shows the entities that
have some sort of interaction with it:

Figure 1-1 – Business Context

1.1 Storm Cloud Platform

Storm Clouds Platform (SCP) is the “digital space” where Storm Clouds services are hosted; it is a cloud
computing platform providing resources made available for running applications.

In the project context, an actual SCP environment is implemented for being shared by the participants of the
consortium; it is built on top of a physical computing infrastructure and provisioned to partners via Internet.
This actual SCP implementation is also called Storm Clouds Project Platform (SCPP) for distinguishing it from
SCP that is intended to refer to the cloud platform reference architecture that could be deployed in other
contexts.

In fact, it’s possible to implement other SCP deployments when some project participants (e.g municipalities)
require that applications run in a different, maybe “more controlled”, environment. This might be preferred
and/or strictly required by security and privacy regulations on the information managed by the applications.
In such a case, SCP design can be totally or partially reused for the implementation of an SCP instance. It’s up
to the implementer to provide the physical infrastructure for running SCP as well as to satisfy the governance
and the operational activities that the SCP implementation and the applications running on top of it might
require.

1.2 Applications

Applications are software artefacts implemented for providing some valuable functions to users like citizens
and/or public servants: for example a web based service designed for planning a guided tour in a city or a
digital marketplace where small businesses can publish their offers. Applications can interoperate each other:
for example the two above mentioned applications might interoperate with a third application for visualizing
a local map.

Applications deployed during the project are selected from the set of applications assessed in this document;
they usually require modifications in order to run on SCP but the SCP is designed for minimizing interventions
and adaptations.

D2.1– Storm Clouds Platform Requirements and Specification Version 1.0

© Storm Clouds 2014 Page 11 of 45

1.3 End Users

End Users are the human beings the applications are implemented for. They can be citizens and/or public
servants who, taking advantage of the implemented functions can accomplish some valuable task.

For example, if an application is designed for supporting on-line surveys, end users are the citizens who use
the application for expressing their opinions on certain topic. In another example, if the application is
designed for managing municipal master plans, end users are public servants who use it for urban planning,
inventory, etc; end users are also citizens who are given the possibility to examine public documents. In this
perspective, all the consumers of all the applications hosted by SCP are collectively called end users.

SCP in itself does not implement any significant function for end users; actually it provides all the
functionalities the end users use through the hosted applications deployed on the platform.

1.4 Application Creators

Application Creators are the entities in charge of implementing the applications hosted in the SCP. From the
project perspective, application creators are organizations like public administrations and/or SMEs that
implement, adapt and manage the applications.

SCP provides application creators with functions for deploying applications using some computational
resources (e.g. virtual machines, virtual disk space, etc.) and for monitoring and controlling their lifecycle in the
platform.

1.5 Application Providers

Application Providers are the owners of the applications. In the project context, public administration entities
(e.g. municipalities) are the application providers. They are in charge of selecting the applications to run in the
SCP and, in some cases, adapting the services to their own requirements.

1.6 Platform Provider

The Platform Provider is the organization in charge of implementing the SCP. In the project context, the
platform provider has the responsibility of designing SCP by selecting the technology used for implementing,
monitoring and operating the platform.

1.7 Infrastructure Provider

The Infrastructure Provider provides the physical resources for implementing the Storm Cloud Platform. It is in
charge of providing computing resources like physical machines, disk storage and network connectivity used
for actually deploying the software for implementing SCP. The infrastructure provider is also in charge of
providing the physical place where the computing resources are located (i.e. data centre(s)) along with power
& cooling facilities, physical security infrastructure (e.g. data centre access control), etc.

In the Storm Clouds project, this role is played by Hewlett Packard for what concerns the implementation of a
shared Storm Cloud Platform but it can also be covered by other entities (e.g. public administrations) in case,
for some business, technical, governance, operational reasons SCPP might result as an inconvenient choice for
hosting some application. In this perspective, the SCP should be “portable” meaning that it should be designed
for running on a “conventional data centre”.

1.8 External Services

External Services are “digital services”, running outside the Storm Cloud Platform, that provide functions used
for implementing applications.

For example, an application implementing a virtual tour of a city might use some service, available on Internet
through a web service interface (e.g. Google Maps), for creating maps. In this example, Google Maps is an
external service because although it is used for implementing the virtual city tour application is not hosted in
the Storm Clouds Platform. As another example, an on-line survey application might require that citizens
authenticate themselves before signing the petition. The authentication could use a digital service, provided, as
a web service, by the local administration that, for security reasons, is deployed on a “safe” digital
workplace (e.g. on an on-premise data centre owned and/or controlled by the public authority). In this
example, the authentication service is an external service.

The Storm Cloud Platform shall make it possible application services and external service interoperate in
order to provide end users with the functions implemented by the applications.

Version 1.0 D2.1 – Storm Clouds Platform Requirements and Specification

Page 12 of 45 © Storm Clouds 2014

2 Application Service Assessment
This chapter is the result of the assessment of the applications candidate to be ported to cloud during the
Storm Clouds project. It gathers functional and technical information with the objective of defining
requirements for the Storm Clouds Platform. The analysis also highlights obstacles to the transformation or the
porting of applications to cloud due to technical and functional reasons. From the technical side, some
applications might be implemented with legacy technologies or might require licenses for using commercial
software products. From the functional view point, issues could be related to the data processed by the
applications. Sensitive information, like personal information, could raise privacy and security issues. Both
these aspects can make porting to cloud impossible or unpractical.

2.1 Applications

This section reports the list of the candidate applications proposed by the project participants.

The information reported here has been gathered by circulating a questionnaire among the participants and,
in some cases, complementing the collected data with information found on the application website, when
available.

Each application is described by providing the following information:

 Proponent – Application: the name of the partner who proposes the application and the name of the
application;

 Functional Description: a brief description of the implemented functions and the users of the
application;

 Availability: the current version of the application and a link to a deployment available on the
Internet (if any);

 Technical Information:

o The list of the technologies used for implementing the application (e.g. the operating system,
programming languages, database engines, etc.);

o Resource information like amount of required RAM, disk space, number of vCPUs, etc.

o Deployment information like the number of servers for running the application, high
availability solutions, load balancing solutions, etc.

2.1.1 Municipio de Águeda - Emissão de Plantas de Localização

Emissão de Plantas de Localização is a local map management system implementing visualization, design,
search, and print of local maps. It is used by citizens, community groups, technicians and public entities in
general.

The application is currently released as a prototype (v. 2.0) available here.

Technical Information

The application is implemented using the following technologies:

Type Technologies

Operating Systems Ubuntu

Programming Languages Javascript, PHP, Java

Databases PostgreSQL, PostGIS

Web/Application Servers Tomcat, Apache, Geoserver

Frameworks ExtJS, NodeJS

Application Lifecycle Tools IDE: Eclipse
Version Control: git
Build Management: -

Open Source Code Repository N/A

The following table reports the sizing information:

Type Value

RAM {GB} 12

Disk Storage {GB} 60

http://softwarelivre.cm-agueda.pt/maria/plantaslocalizacao.html

D2.1– Storm Clouds Platform Requirements and Specification Version 1.0

© Storm Clouds 2014 Page 13 of 45

vCPUs 8

Network usage {GB} N/A

Hits/Month 250

Registered Users 691

Maximum On-line Users N/A

Average On-line Users N/A

The application requires two servers: one database server (4 vCPU – 4 GB RAM) and one web server (4
vCPU – 8 GB RAM). These servers are shared together with application Plano Director Municipal (see below).
Load balancing and high availability are not implemented.

The application manages sensitive information like name, address and VAT number of the users.

2.1.2 Municipio de Águeda - Plano Director Municipal

Plano Director Municipal is an application that manages municipal maps. Users visualize maps, search point of
interests and export map data in KML format. KML format is used to display geographic data in Earth
browsers such as Google Earth, Google Maps, and Google Maps for mobile. Users are citizens, community
groups, technicians and city hall administrators.

The application is currently released as prototype (v. 1.0) available here.

Technical Information

The application is implemented using the following technologies:

Type Technologies

Operating Systems Ubuntu

Programming Languages Javascript, PHP, Java

Databases PostgreSQL, PostGIS

Web/Application Servers Apache, Tomcat, Geoserver

Frameworks ExtJS, NodeJS

Application Lifecycle Tools IDE: Eclipse
Version Control: git
Build Management: -

Open Source Code Repository N/A

The following table reports the sizing information:

Type Value

RAM {GB} 12

Disk Storage {GB} 10

vCPUs 8

Network usage {GB} N/A

Hits/Month N/A

Registered Users N/A

Maximum On-line Users N/A

Average On-line Users N/A

The application is deployed on the same servers of Emissão de Plantas de Localização (see above).

2.1.3 Municipio de Águeda - HotSpot CMA

HotSpot CMA is a project that allows access to information and communication technologies as a form of
democratization. The project has implemented hotspots located in the city area and a captive portal through
which users (i.e. citizens) access Internet services.

The application candidate to be ported to cloud is the captive portal that implements a web based
authentication interface. It is currently in testing phase (v 1.4) and a demo is available here.

Technical Information

The application is implemented using the following technologies:

Type Technologies

Operating Systems Ubuntu

Programming Languages Javascript, PHP

http://softwarelivre.cm-agueda.pt/parnet/visualgeo.html
http://www.agueda.pt/Agueda.pt/Inicio.html

Version 1.0 D2.1 – Storm Clouds Platform Requirements and Specification

Page 14 of 45 © Storm Clouds 2014

Databases MySQL

Web/Application Servers nginx

Frameworks ExtJS, JQuery

Application Lifecycle Tools IDE: NetBeans, Aptana Studio
Version Control: svn
Build Management: -

Open Source Code Repository N/A

The following table reports the sizing information:

Type Value

RAM {GB} 2

Disk Storage {GB} 20

vCPUs 2

Network usage {GB} 200

Hits/Month 6000

Registered Users 1500

Maximum On-line Users 100

Average On-line Users 20

The application is deployed on a single server; load balancing and high availability features are performed
using VMware virtualization technology. The captive portal interacts with a management portal, a
FreeRADIUS server all connected to the same MySQL database instance. The system requires a domain name:
agueda.pt.

It is worth noticing that users implicitly interact with other systems when accessing Internet (e.g. access points,
routers, gateways, etc.). During the assessment, some technical information was provided about these
equipment but it is not reported here because these components are not meant to be candidate for being
ported to cloud.

2.1.4 Municipio de Águeda - Lime Survey

Lime Survey is an online portal where users can publish and collect responses from questionnaires; it can be
used by local authorities to collect feedback from citizens about proposals, events, etc. The application let
users to invite group of people to participate in research, keep track of what the survey found, and ensure
that each person can only enter once. The application also keeps tracks of participants who has not yet
responded, and send them reminder email. Administrator can import lists of names and email addresses and
generate a unique token number for each participant.

The application is currently in testing (v. 2.05) and a demo is available here.

Technical Information

The application is implemented using the following technologies:

Type Technologies

Operating Systems Linux (generic)

Programming Languages Javascript, PHP, Perl

Databases PostgreSQL / MS SQL

Web/Application Servers Apache

Frameworks -

Application Lifecycle Tools IDE: -
Version Control: git
Build Management: -

Open Source Code Repository Link

The following table reports the sizing information:

Type Value

RAM {GB} 1

Disk Storage {GB} 160

vCPUs 2

Network usage {GB} N/A

Hits/Month N/A

Registered Users N/A

https://survey.limesurvey.org/index.php?sid=78184&lang=en
https://github.com/trougakoss/LimeSurvey

D2.1– Storm Clouds Platform Requirements and Specification Version 1.0

© Storm Clouds 2014 Page 15 of 45

Type Value

Maximum On-line Users N/A

Average On-line Users N/A

The application is deployed on a single server. Load balancing and high availability implementation are take
advantage of the VMware virtualization technology solutions (e.g. VMware HA). The application implements a
“tokens batch function” that consist of generating a unique token number for each participant subsequently
used to manage the life-cycle of the survey.

It supports both PostgreSQL and MS SQL but the current deployment uses the former one.

It manages sensitive information like users’ names and address.

2.1.5 Ariadna Servicios Informáticos - Co-Labora

Co-Labora is a workflow management application that citizens and city hall employees can use for
collaborating, for example for reporting and managing urban incidents.

The application is under development.

Technical Information

The application is implemented using the following technologies:

Type Technologies

Operating Systems Linux (generic), Win Server 2008

Programming Languages PHP

Databases MySQL

Web/Application Servers Apache

Frameworks Drupal

Application Lifecycle Tools IDE: N/A
Version Control: svn
Build Management: -

Open Source Code Repository N/A

The following table reports the sizing information:

Type Value

RAM {GB} N/A

Disk Storage {GB} N/A

vCPUs N/A

Network usage {GB} N/A

Hits/Month N/A

Registered Users 100000

Maximum On-line Users 2500

Average On-line Users 800

The application is deployed on a single server and implements batch functions for generating usage statistics.

Neither high availability nor load balancing solutions are currently implemented.

It manages sensitive data like citizens’ location.

2.1.6 Ariadna Servicios Informáticos – SEDOC

SEDOC is an application managing and tracking physical and digital documents. It’s available in the form of
web user interface, Windows Phone Application and Windows desktop application.

The application is currently under development (v. 0.91).

Technical Information

The application is implemented using the following technologies:

Type Technologies

Operating Systems Ubuntu

Programming Languages PHP, Java, C#

Databases MySQL, SQLite

Web/Application Servers Tomcat

Version 1.0 D2.1 – Storm Clouds Platform Requirements and Specification

Page 16 of 45 © Storm Clouds 2014

Frameworks Drupal, NodeJS, Puppet, Vagrant

Application Lifecycle Tools IDE: Eclipse, Visual Studio
Version Control: svn
Build Management: Maven, Jenkins

Open Source Code Repository N/A

The following table reports the sizing information:

Type Value

RAM {GB} 1

Disk Storage {GB} 10

vCPUs N/A

Network usage {GB} 0.5

Hits/Month N/A

Registered Users N/A

Maximum On-line Users N/A

Average On-line Users N/A

The application is deployed on a single server and it is integrated with the client ERP via web services.

The application manages confidential information regarding financial-related contracts of the municipalities.

2.1.7 Ariadna Servicios Informáticos – SIMPLEXT

SIMPLEXT is a text simplification tool for Spanish language that simplifies text from RSS sources and also
during the web navigation. It is intended for people with intellectual disabilities and for intensive news
consumers.

The application is currently released as a prototype available here (subject to a previous access request).

Technical Information

The application is implemented using the following technologies:

Type Technologies

Operating Systems Ubuntu

Programming Languages Java

Databases N/A

Web/Application Servers Tomcat, Apache

Frameworks -

Application Lifecycle Tools IDE: Eclipse
Version Control: svn
Build Management: -

Open Source Code Repository N/A

The following table reports the sizing information:

Type Value

RAM {GB} 6.5

Disk Storage {GB} N/A

vCPUs N/A

Network usage {GB} 0.5

Hits/Month N/A

Registered Users 2000

Maximum On-line Users 50

Average On-line Users 20

The application requires a public domain (www.simplext.net) and it is integrated with third-party open source
components like GATE, Freeling, MATETools, OpenNLP and LexSis.

2.1.8 Manchester City Council - City Navigator

City Navigator is a fully Open Source, mobile HTML5 public transport journey planner and navigation
application for on-the-go use. It leverages data from multiple sources including OpenStreetMap, TfGM,
Manchester City Council, and CitySDK. The goal is to take unpredictability away from public transportation

http://www.simplext.net/
http://www.simplext.net/

D2.1– Storm Clouds Platform Requirements and Specification Version 1.0

© Storm Clouds 2014 Page 17 of 45

and make it more accessible. It is used by people using or plannning to use the public transportation of the
city of Manchester.

The application is currently released as a prototype.

Technical Information

The application is implemented using the following technologies:

Type Technologies

Operating Systems N/A

Programming Languages Python

Databases N/A

Web/Application Servers N/A

Frameworks NodeJS, JQuery Mobile, Leaftlet, Faye

Application Lifecycle Tools IDE: N/A
Version Control: git
Build Management: -

Open Source Code Repository Link

The following table reports the sizing information:

Type Value

RAM {GB} N/A

Disk Storage {GB} N/A

vCPUs N/A

Network usage {GB} N/A

Hits/Month N/A

Registered Users N/A

Maximum On-line Users N/A

Average On-line Users N/A

The web application requires a public domain. Programming languages include Python for backend/server
code and CoffeeScript (compiled into JavaScript) for backend and front-end code.

At the time being, the application doesn’t manage sensitive information but in future it could be personalised
with social media data.

2.1.9 Ayuntamiento de Valladolid - Blue Parking Valladolid

Blue Parking Valladolid is an application that implements an intelligent parking system for the city of
Valladolid. The application doesn’t require sensors or other infrastructure because information on the
available parking spaces is implicitly provided by the users via their mobile devices. Users find a car park
and pay directly from smart-phone while inspectors use a specific version of the application to validate the
park.

The application is delivered (v. 1.0) and available here.

Technical Information

The application is implemented using the following technologies:

Type Technologies

Operating Systems CentOS, Windows Server 2008 Sp2

Programming Languages Javascript, Java, Python, PL/SQL

Databases MongoDB, Oracle SEO

Web/Application Servers Tomcat

Frameworks NodeJS, socket.io, mongojs, redis, poolee

Application Lifecycle Tools IDE: Eclipse, Jdeveloper, Xcode
Version Control: git, svn
Build Management: -

Open Source Code Repository N/A

The following table reports the sizing information:

Type Value

RAM {GB} 4

https://github.com/codeforeurope/tfgm
https://www.blueparkingvall.com/

Version 1.0 D2.1 – Storm Clouds Platform Requirements and Specification

Page 18 of 45 © Storm Clouds 2014

Disk Storage {GB} 40

vCPUs 1

Network usage {GB} 30000

Hits/Month 15

Registered Users 600

Maximum On-line Users 100

Average On-line Users 50

Blue Parking Valladolid is a client-server application implemented as a centralized service available on
Internet and distributed clients running on mobile devices. Server side, the application is deployed on four
servers interacting with an SSL certification service, the Spanish national timestamp service and Google Maps.
Client side, it interacts with Mapbox and Google Maps. Both the database engine (MongoDB, Oracle SEO)
are used in a single deployment for storing different information.

The server side part of the application (candidate to be ported to the cloud) currently implements load
balancing and high availability.

The application manages sensitive data and uses domain name blueparkingvall.com.

2.1.10 Ayuntamiento de Valladolid - Ideol–Innobarómetro

Ideol–Innobarómetro is an application that allows users to visualize innovative companies. It shows the location
where the companies are located within the city area.

The application in currently under development and a prototype (v. 1.0) is available here.

Technical Information

The application is implemented using the following technologies:

Type Technologies

Operating Systems Ubuntu

Programming Languages Javascript, Java, Python, PHP

Databases PostgreSQL, PostGIS, MySQL

Web/Application Servers Tomcat, GeoServer, MapServer

Frameworks OpenLayers

Application Lifecycle Tools IDE: Eclipse
Version Control: svn
Build Management: -

Open Source Code Repository N/A

The following table reports the sizing information:

Type Value

RAM {GB} 4

Disk Storage {GB} 10

vCPUs 2

Network usage {GB} N/A

Hits/Month N/A

Registered Users N/A

Maximum On-line Users N/A

Average On-line Users N/A

The application is deployed on a single server and interacts with a Web Map Service (a connection to a map
server) and mail servers. The application manages sensitive data like the name of the responsible of the
company. It requires a public domain name.

2.1.11 Ayuntamiento de Valladolid – LocalGIS

LocalGIS is a territorial information system for local governments that facilitates municipal management in a
georeferenced way, and offers advanced on-line information services to citizens using the cartography of the
municipality.

It implements on-line web mapping services, for citizens and city council users and advanced desktop functions
for public servants like urban planning, cadastre, inventory, public transportation information, routing,
infrastructures, concessions, construction licenses, etc.

http://valladolid.iver.es/

D2.1– Storm Clouds Platform Requirements and Specification Version 1.0

© Storm Clouds 2014 Page 19 of 45

It’s based on Open GIS technologies (Open Geographic Information Systems).

The application is delivered (v. 2.1) and available here.

Technical Information

The application is implemented using the following technologies:

Type Technologies

Operating Systems Ubuntu, CentOS, WinServ 2008

Programming Languages JavaSript, Java

Databases PostgreSQL, PostGIS

Web/Application Servers Tomcat, Jetty, MapServer, GeoServer

Frameworks -

Application Lifecycle Tools IDE: Eclipse
Version Control: git, svn
Build Management: Jenkins

Open Source Code Repository Link

The following table reports the sizing information:

Type Value

RAM {GB} 8

Disk Storage {GB} 200

vCPUs 2

Network usage {GB} 3

Hits/Month 20000

Registered Users 300

Maximum On-line Users 100

Average On-line Users 20

The application is deployed on a single server and interacts with external systems like the Council Web Page,
the Document Management System and the Case Management System via web services. It requires a DNS
server and implements load balancing (currently implemented with dedicated networking equipment) and high
availability (currently implemented with Heartbeat and DRBD).

The application manages sensitive data like personal information of citizens, including cadastre information.

The application does not require a domain name but it’s recommended for publishing information to citizens
using Web Map Services.

2.1.12 Ayuntamiento de Valladolid - Urbanismo en Red – UeR

Urbanismo en Red (UeR) is created with the purpose of publishing the municipal development plans, across
Internet, enabling citizens to access them easily. It is designed for increasing and enhancing transparency in
public management of urban sectors. Moreover it provides full interoperability between the various authorities
and stakeholders, through electronic services that enable the provision of information of urban planning, to be
used by different stakeholders. The application is used by end users (public), operators (GIS technicians) and
administrators.

The application is already released (v. 2.0) and is available here.

Technical Information

The application is implemented using the following technologies:

Type Technologies

Operating Systems Ubuntu

Programming Languages Java

Databases PostgreSQL, PostGIS

Web/Application Servers JBoss

Frameworks N/A

Application Lifecycle Tools IDE: N/A
Version Control: svn
Build Management: -

Open Source Code Repository Link

https://www.planavanza.es/avanzalocal/Soluciones/AL_GIS/Paginas/Index.aspx
https://www.planavanza.es/avanzalocal/Soluciones/AL_GIS/Paginas/Descargas.aspx
http://www10.ava.es/Visor
http://www.urbanismoenred.es/urbanismoenred/content/herramientas-software-urbanismo-en-red-y-documentaci%C3%B3n-asociada-0

Version 1.0 D2.1 – Storm Clouds Platform Requirements and Specification

Page 20 of 45 © Storm Clouds 2014

The following table reports the sizing information:

Type Value

RAM {GB} 12

Disk Storage {GB} 250

vCPUs 4

Network usage {GB} 2

Hits/Month 50000

Registered Users N/A

Maximum On-line Users N/A

Average On-line Users N/A

The application is deployed on four servers: one application server and one database server both replicated.
Application servers require 12 GB of RAM each, while database servers require 6 GB each. Load balancing
is implemented using HAPROXY and high availability is implemented with Hearthbeat and DRDB. It requires a
domain name: www10.ava.es.

2.1.13 URENIO - Virtual City Tour

Virtual City Tour creates an engaging, interactive community map of local sights and attractions. It allows
people to discover, in a geographical way, point of interests. For each attraction, it shows a description with
useful information and gives the possibility to do a virtual tour to discover in advance the particular point of
interest.

The application is delivered (v. 2.0) and available here.

Technical Information

The application is implemented using the following technologies:

Type Technologies

Operating Systems Ubuntu, Linux (generic)

Programming Languages Javascript, PHP

Databases MySQL

Web/Application Servers Apache

Frameworks JQuery, Joomla, Google Maps

Application Lifecycle Tools IDE: Eclipse
Version Control: git
Build Management:

Open Source Code Repository Link

The following table reports the sizing information:

Type Value

RAM {GB} 0.5

Disk Storage {GB} 10

vCPUs N/A

Network usage {GB} N/A

Hits/Month N/A

Registered Users N/A

Maximum On-line Users N/A

Average On-line Users N/A

This application is deployed on a single server. It requires backup and DNS services.

2.1.14 URENIO - Virtual City Marketplace

Virtual City Marketplace enables the creation of a smart marketplace managed by the local shopping
community. It empowers the city local market by bringing together customers and merchants. Local shops are
showed inside a local map, along with consumer reviews and promotional offers.

The application is delivered (v. 1.0b) and available here.

Technical Information

The application is implemented using the following technologies:

https://smartcity.thermi.gov.gr/improve/el/virtualcitytour
https://github.com/icos-urenio/Virtual-City-Tour-360
http://smartcity.thermi.gov.gr/market/

D2.1– Storm Clouds Platform Requirements and Specification Version 1.0

© Storm Clouds 2014 Page 21 of 45

Type Technologies

Operating Systems Ubuntu, Linux (generic)

Programming Languages Javascript, PHP

Databases MySQL

Web/Application Servers Apache

Frameworks Google Maps

Application Lifecycle Tools IDE: Eclipse
Version Control: git
Build Management: -

Open Source Code Repository Link

The following table reports the sizing information:

Type Value

RAM {GB} 0.5

Disk Storage {GB} 10

vCPUs N/A

Network usage {GB} N/A

Hits/Month N/A

Registered Users N/A

Maximum On-line Users N/A

Average On-line Users N/A

This application is deployed on a single server. It requires backup and DNS services.

2.1.15 URENIO - Improve My City

Improve My City enables citizens to report local problems such as potholes, illegal trash dumping, faulty street
lights, broken tiles on sidewalks and illegal advertising boards. The submitted issues are displayed on the city
map. Users may add photos and comments. Moreover, they can suggest solutions for improving the
environment of their neighbourhood. The application is also available as a mobile app for Android and
iPhone devices. The mobile app is fully interconnected with the web platform and supports the full range of
the aforementioned features adding some extra functionality based on the capabilities of modern
smartphones.

The application is delivered (v. 2.5.7) and available here.

Technical Information

The application is implemented using the following technologies:

Type Technologies

Operating Systems Ubuntu, Linux (generic)

Programming Languages Javascript, PHP

Databases MySQL

Web/Application Servers Apache

Frameworks JQuery, Joomla, Google Maps

Application Lifecycle Tools IDE: Eclipse
Version Control: git
Build Management: -

Open Source Code Repository Link

The following table reports the sizing information:

Type Value

RAM {GB} 0.5

Disk Storage {GB} 10

vCPUs N/A

Network usage {GB} N/A

Hits/Month N/A

Registered Users N/A

Maximum On-line Users N/A

Average On-line Users N/A

This application is deployed on a single server. It requires backup and DNS services.

https://github.com/icos-urenio/virtual-city-market
https://smartcity.thermi.gov.gr/improve/
https://github.com/icos-urenio/Improve-my-city

Version 1.0 D2.1 – Storm Clouds Platform Requirements and Specification

Page 22 of 45 © Storm Clouds 2014

2.1.16 URENIO - Sense the City

Sense the City is an open source web application that receives and visualizes air pollution data from sensors
around the city. It currently supports Libelium devices (see http://www.libelium.com), giving the possibility to
interfaces with a large amount of sensor device models.

The application is delivered (v. 1) and available here.

Technical Information

The application is implemented using the following technologies:

Type Technologies

Operating Systems Ubuntu, Linux (generic)

Programming Languages Javascript, PHP

Databases MySQL

Web/Application Servers Apache

Frameworks JQuery, Joomla, Google Maps, NodeJS

Application Lifecycle Tools IDE: Eclipse
Version Control: git
Build Management:

Open Source Code Repository Link

The following table reports the sizing information:

Type Value

RAM {GB} 0.5

Disk Storage {GB} 10

vCPUs N/A

Network usage {GB} N/A

Hits/Month N/A

Registered Users N/A

Maximum On-line Users N/A

Average On-line Users N/A

This application is deployed on a single server. It requires backup and DNS services.

2.1.17 URENIO - Honolulu Answers

Honolulu Answers is a new approach to make it easier for people to navigate city information and services
quickly. It's a citizen-focused website that is question-driven, with clean, easy-to-navigate design. Unlike a
portal destination, Honolulu Answers is like Google -- type in anything, and it probably gives you the answer
you're looking for, using the words you know. Every page on the site is an answer to a potential Google
search question by a citizen, written in simple, friendly language, as if you'd asked your neighbor a question.
The content is organized based on citizen understanding, the intuitive way you'd think of a problem, not the
way the city is organized internally.

The application is delivered here.

Technical Information

The application is implemented using the following technologies:

Type Technologies

Operating Systems Ubuntu

Programming Languages Ruby

Databases PostgreSQL

Web/Application Servers N/A

Frameworks N/A

Application Lifecycle Tools IDE: N/A
Version Control: git
Build Management:

Open Source Code Repository Link

The following table reports the sizing information:

Type Value

https://smartcity.thermi.gov.gr/improve/el/sensethecity
https://github.com/icos-urenio/SenseTheCity
http://answers.honolulu.gov/
https://github.com/codeforamerica/honolulu_answers

D2.1– Storm Clouds Platform Requirements and Specification Version 1.0

© Storm Clouds 2014 Page 23 of 45

RAM {GB} N/A

Disk Storage {GB} N/A

vCPUs N/A

Network usage {GB} N/A

Hits/Month N/A

Registered Users N/A

Maximum On-line Users N/A

Average On-line Users N/A

This application is deployed on a single server.

2.1.18 URENIO – OpenTripPlanner

OpenTripPlanner is an open source multi-modal trip planner. It depends on open data in open standard file
formats (GTFS and OpenStreetMap), and includes a REST API for journey planning as well as several map-
based Javascript clients. OpenTripPlanner can also create travel time contour visualizations and compute
accessibility indicators for planning and research applications.

The application is delivered (v. 0.9.1) and available here.

Technical Information

The application is implemented using the following technologies:

Type Technologies

Operating Systems N/A

Programming Languages Java

Databases N/A

Web/Application Servers Tomcat, Geoserver

Frameworks -

Application Lifecycle Tools IDE: Eclipse, NetBeans
Version Control: git
Build Management: N/A

Open Source Code Repository Link

The following table reports the sizing information:

Type Value

RAM {GB} 2

Disk Storage {GB} N/A

vCPUs N/A

Network usage {GB} N/A

Hits/Month N/A

Registered Users N/A

Maximum On-line Users N/A

Average On-line Users N/A

This application is deployed on a single server. It requires backup and DNS services.

2.1.19 URENIO – Crowdtilt

Crowdtilt is a full-featured, open-source, customizable crowd-funding tool that allows anyone to launch their
own campaign. It is a powerful and flexible crowd-funding solution for brands, businesses and organizations.

The application is delivered (v. 2.0) and available here.

Technical Information

The application is implemented using the following technologies:

Type Technologies

Operating Systems N/A

Programming Languages Ruby

Databases PostgreSQL

Web/Application Servers Apache, nginx

Frameworks RubyOnRails, ImageMagick

http://ride.trimet.org/#/
https://github.com/opentripplanner/OpenTripPlanner
https://open.crowdtilt.com/

Version 1.0 D2.1 – Storm Clouds Platform Requirements and Specification

Page 24 of 45 © Storm Clouds 2014

Application Lifecycle Tools IDE: N/A
Version Control: git
Build Management: N/A

Open Source Code Repository Link

The following table reports the sizing information:

Type Value

RAM {GB} 2

Disk Storage {GB} N/A

vCPUs N/A

Network usage {GB} N/A

Hits/Month N/A

Registered Users N/A

Maximum On-line Users N/A

Average On-line Users N/A

This application is deployed on a single server.

2.1.20 URENIO – LocalWiki

LocalWiki is tool for collaborating in local, geographic communities. It supports a grassroots effort to collect,
share and open the world’s local knowledge.

The application is released (v. 0.5.5) and available here.

Technical Information

The application is implemented using the following technologies:

Type Technologies

Operating Systems Ubuntu, CentOS

Programming Languages Python

Databases PostgreSQL, PostGIS

Web/Application Servers Apache

Frameworks Django, Cloudmade

Application Lifecycle Tools IDE:
Version Control: git
Build Management: N/A

Open Source Code Repository Link

The following table reports the sizing information:

Type Value

RAM {GB} N/A

Disk Storage {GB} N/A

vCPUs N/A

Network usage {GB} N/A

Hits/Month N/A

Registered Users N/A

Maximum On-line Users N/A

Average On-line Users N/A

This application is deployed on a single server. It requires backup and DNS services.

2.1.21 URENIO – OpenCivic

OpenCivic is a distribution of Drupal (https://drupal.org/) designed to support communities of software
developers in creating, cataloguing and sharing software applications. It is based on Code for America's Civic
Commons project, which was created as a platform for sharing information specifically about "civic software"
used by governments and nonprofit organizations to provide public services. The main goal of this distribution
is to help build websites that enable people to share information about software applications.

The application is released and accessible here.

Technical Information

https://github.com/crowdtilt/crowdtiltopen
http://localwiki.net/santacruz/
https://github.com/localwiki/localwiki
http://commons.codeforamerica.org/

D2.1– Storm Clouds Platform Requirements and Specification Version 1.0

© Storm Clouds 2014 Page 25 of 45

The application is implemented using the following technologies:

Type Technologies

Operating Systems Ubuntu, Linux (generic)

Programming Languages Javasrcipt, PHP

Databases MySQL

Web/Application Servers Apache, nginx

Frameworks Drupal

Application Lifecycle Tools IDE: N/A
Version Control: git
Build Management: N/A

Open Source Code Repository Link

The following table reports the sizing information:

Type Value

RAM {GB} N/A

Disk Storage {GB} N/A

vCPUs N/A

Network usage {GB} N/A

Hits/Month N/A

Registered Users N/A

Maximum On-line Users N/A

Average On-line Users N/A

This application is deployed on a single server. It requires DNS services. In addition to the standard Drupal
requirements it needs the following Drupal add-ons: drush 3.1 and drush make 2.0 beta 9.

2.1.22 URENIO - We the People Petitions

We The People Petitions gives citizens a way to create and sign petitions on a range of issues affecting their
city. It is a Drupal 7 code base used to build an application that lets users create and sign petitions. It’s
based on an initiative of President Obama’s government to create the most open and participatory
government of US history, and this petitioning platform is a key part of that initiative. Site visitors can create
a user account, log in, and create petitions. Petition creators can share the URL for their petition to generate
signatures. When the petition crosses a certain threshold, the petition becomes "public" and is listed as an
open petition on the site's "open petitions" page. Visitors can sign petitions. Petitions that receive a designated
number of signatures (at the White House the number is 100,000 in one month) get a response.

The application is released (v. 2.0) and available here.

Technical Information

The application is implemented using the following technologies:

Type Technologies

Operating Systems Ubuntu

Programming Languages Javasrcipt, PHP

Databases MySQL, MongoDB

Web/Application Servers N/A

Frameworks Drupal

Application Lifecycle Tools IDE: N/A
Version Control: git
Build Management: N/A

Open Source Code Repository Link

The following table reports the sizing information:

Type Value

RAM {GB} 1

Disk Storage {GB} N/A

vCPUs N/A

Network usage {GB} N/A

Hits/Month N/A

Registered Users N/A

https://github.com/civic-commons/opencivic
https://petitions.whitehouse.gov/
https://github.com/WhiteHouse/petitions

Version 1.0 D2.1 – Storm Clouds Platform Requirements and Specification

Page 26 of 45 © Storm Clouds 2014

Maximum On-line Users N/A

Average On-line Users N/A

This application is deployed on a single server. It requires DNS services. Although not strictly required, a
dedicated MongoDB server is recommended.

2.1.23 RTDI - PLAY and STREAM

Play and Stream are two candidate objects that need to be dealt separately. Actually, they aren’t
applications; instead they are technologies that could be used in the implementation of the cloud platform
architecture.

PLAY

PLAY develops and validates an elastic and reliable architecture for dynamic and complex, event-driven
interaction in large highly distributed and heterogeneous service systems. Such architecture will
enable ubiquitous exchange of information between heterogeneous services, providing the possibilities to
adapt and personalize their execution, resulting in the so-called situational-driven process adaptivity. It is
implemented using the Java programming language and uses MongoDB as database. It is deployed to the
Apache Tomcat application server. The source code is available here.

STREAM

STREAM is an architecture that provides real-time services over massive data flows. The main characteristics
are:

- Scalability: Scaling in the data stream volume in addition to scaling in the number of queries and/or
operators and able to scale to 100s of nodes.

- Elasticity: Growing and shrinking the number of nodes as needed to cope with the incoming load and
minimizing the used resources.

- Low latency and high throughput network communication.

- High throughput storage able to store streaming data at network rates.

2.2 Assessment Results

This section discusses the information gathered during the application assessment. Details for each application
are provided in the previous section, now the goal is to wrap up and come up with a list of common functions
and technologies used for implementing the applications. They will influence the design of the cloud platform
in order to facilitate the transportation.

Most of the applications are implemented using open source products at different levels (e.g. operating
systems, databases, frameworks, developing tools and web servers). The use of open source software is
crucial both in general and specifically for this project because European Commission (EC) “supports
Free/Open Source Software (FOSS) as a development model since it is a very effective way to collaboratively
develop software with fast take-up and improvement cycles. It is more and more used as a vehicle for the
dissemination of results of ICT research projects. Those aspects are particularly important for the development of
the information society, and in particular of the future internet of services, as FOSS provides open and adaptable
building blocks that lower the barriers to entry to new service providers and allow them to develop and innovate
faster” [4]. The EC developed a strategy to use even in their internal systems a family of OSS products and
tools.
On the other hand, few applications are implemented with proprietary technologies (e.g. Oracle DBMS,
Windows Server 2008, etc.) raising issues when porting applications to cloud. Problems are related to the
licensing of the software products used for implementing the applications: some software vendors base their
licensing on the number of users (named or concurrent), others charge on a per-processor or per-core basis still
other vendors define some ‘exotic’ different usage metric. When porting an application to cloud, these
aspects need to be thoroughly examined in order to be sure that the act of “porting the application to cloud”
doesn’t constitute an infringement of the licensing rights that the application proponent(s) have in place with
the software vendor. As a general rule, any right not explicitly stated as being granted to the customer in the
license agreement is retained by the software manufacturer.
A full analysis of the issues raised by the use of licensed software products in the application is largely out of
the scope of this document and the Software Cloud Platform design, in general.
It is worth noticing that the usage of proprietary software solutions could also constitute an exception to the
project objectives as reported in the DOW: “No proprietary approach is envisaged during the project. The

https://github.com/play-project/

D2.1– Storm Clouds Platform Requirements and Specification Version 1.0

© Storm Clouds 2014 Page 27 of 45

project partners declare strong commitment to an ‘open’ approach. This is manifested by: (i) releasing the
developed technologies under OSS (open source software) (ii) relying on open innovation methodologies; (iii)
promoting open standards, (iv) putting emphasis on usability and reusability and interoperability of technological
solutions deployed under the project”, [3].
In addition, the applications based on licensed software could be less attractive for organizations willing to
reuse the implemented functions because of the related license cost. This could ‘frustrate’ the inclusion of such
applications in the catalogue of the reusable applications.

The analysis of the technical aspects of the applications shows that most of them are implemented as LAMP
software bundles.
According to a broadly accepted definition [5], "The acronym LAMP refers to first letters of the four
components of a solution stack, composed entirely of free and open-source software, suitable for building high-
availability heavy-duty dynamic web sites, and capable of serving tens of thousands of requests simultaneously".

The meaning of the LAMP acronym depends on which specific components are used as part of the actual bundle,
in this case:

 Linux, the operating system (i.e. not just the Linux kernel, but also glibc and some other essential
components of an operating system)

 Apache HTTP Server, the web server

 MySQL, MariaDB or MongoDB, the database management system

 PHP or Python, the scripting languages (respectively programming languages) used for dynamic web
pages and web development.

Many candidate applications are developed and built using these technologies, which are considered
standard de facto.
There are some notable variations to this baseline. Some applications require the PostgreSQL as relational
database management system instead of one of above mentioned DBMS but this is not a problem, since
PostgreSQL is open source, wide used and supported. Other applications are implemented with different
languages (e.g. Java or JavaScript) or are based on different frameworks (NodeJS, ExtJS, JQuery, Joomla,
Drupal).
An interesting common aspect of the applications is the type of workload; almost all the applications have
significant need for web and/or mobile access and this is an important point to take into account when
designing the proper cloud solutions. As a matter of fact, the market offers several cloud solutions specifically
designed for supporting this type of workload. Some solutions are available as ‘pure services’ meaning that
users can only purchase the ability of running applications in a proprietary cloud platform made available via
Internet. On the other hand, there are solutions that can be implemented on-premise by installing on in-house
hardware proper software solutions providing similar services. Software platforms like OpenShift and
CloudFoundry are open software Platform as a Service (PaaS) software solutions specifically designed for
supporting web-based applications. It is worth noticing that these platforms significantly facilitate the
deployment and the management of applications in the cloud and, in some cases, can also simplify the
development by integrating software versioning and software repository systems (e.g. SVN and Git),
software Integrated Development Environments (e.g. Eclipse).
The Storm Cloud Platform design shall take into account the findings of the application service assessment and
investigate the possibility of using open software PaaS solutions.

The assessment shows that some applications manage sensitive information like, for example, personal data of
the users.
This is a critical aspect for cloud computing in general and for Storm Clouds project in particular.
Beside the implementation of extensive security controls like unauthorized access prevention, data encryption
and ad hoc firewall policy, there still remain questions where data are located. In fact, data is stored
physically in a particular country and is subject to local rules and regulations. Using applications that manage
sensitive data implies, for the cloud platform, to be aware of such rules and regulations and acts in order to
respect it: for example to store data in a particular data centre located in a particular region. Such actions
could complicate, or even inhibit the porting of applications to cloud in particular if “public cloud” services are
used. This aspect needs to be thoroughly examined during the project in particular for the application
portfolio definition because it can be a critical aspect for the adoption of the services.

Version 1.0 D2.1 – Storm Clouds Platform Requirements and Specification

Page 28 of 45 © Storm Clouds 2014

3 Storm Clouds Platform Requirements and Specification
This chapter defines the Storm Clouds Platform requirements and specification.

3.1 The NIST Definition of Cloud Computing

The National Institute of Standard and Technology (NIST) provides a definition of cloud computing along with
the definition of some important related aspects [6]. These definitions are intended “to provide a baseline for
discussion from what is cloud computing to how to best use cloud computing”.

Cloud computing is a complex topic spanning a wide spectrum of underlying technologies, configuration
possibilities, provided services and deployment models. NIST gives a general, yet precise, classification of the
various aspects to consider when defining or analyzing cloud computing, in general, or specific cloud
computing systems.

In this paragraph, the NIST definitions are analyzed and challenged with the objective of eliciting
requirements applicable to Storm Clouds Project and the implementation of SCP and SCPP.

3.1.1 Cloud Computing Definition

NIST defines cloud computing paradigm as follows [6]:

"Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or service provider interaction".

The definition can be illustrated by the following picture:

Figure 3-1 – Cloud Computing Definition

The figure shows users that, using a client technology, access via a network connection a set of cloud services
made available by a cloud provider. Users – also called cloud consumer – may arrive and depart making
the use of cloud services variable. The cloud provider implements cloud services using a set of physical
hardware resources (i.e. computer servers, disk storage and network equipments/connections) that can be

D2.1– Storm Clouds Platform Requirements and Specification Version 1.0

© Storm Clouds 2014 Page 29 of 45

added and retired at any time (from the cloud consumer viewpoint), in order to meet a level of service the
provider is wanting or is required to implement.

In the paragraph above, some terms have been introduced and need a formal definition NIST provides [7]:

 cloud consumer or customer: a person or organization that is a customer of a cloud; note that a

cloud customer may itself be a cloud and that clouds may offer services to one another;

 client: a machine or software application that accesses a cloud over a network connection, perhaps

on behalf of a consumer;

 cloud provider or provider: an organization that provides cloud services.

In the Storm Clouds Project perspective, cloud computing model and the explanation above elicit some
considerations that need to be taken into account.

The SCP design, for example, shall implement the possibility of accessing the cloud services it implements via a
network connection and, more specifically, SCPP (the actual SCP deployment implemented for shared usage)
shall be reachable via Internet. This is a direct consequence of the project consortium that involves
organizations that are located in different countries making it impossible to allow personnel to access a
location where the actual cloud infrastructure is installed (i.e. data centre).

NIST definition claims that the access to resources is to be convenient. This assertion can be interpreted from
different angles. From the cloud consumer view point it could be related to the price s/he pays for a
subscription to cloud services. In the project context, this doesn’t appear to have much importance. From the
cloud provider view point, on the other hand, the idea of convenience could be related to an efficient use of
the physical resources (e.g. servers) used for implementing an actual platform. In the project context, this is
important aspect for controlling the cost of the SCPP according to the budget. In more general terms, a SCP
design aimed to efficiently use computing resources can be beneficial also for those project participants
willing to implement their own cloud. The application assessment provides interesting indications on this topic.
All the analyzed applications can be classified as “web-based” and (part of) their workload present
characteristics of that type. Based on this information, SCP design could include solutions specifically designed
for this kind of workload/application that, at the same time, facilitates the migration to cloud of the
applications and optimize the resource usage

Figure 3-1 – Cloud Computing Definition shows that the cloud provider can add and remove hardware to the
physical infrastructure. This aspect has several implications on actual cloud computing platform in general and
on SCP and SCPP in particular.
Generally speaking, the removal of hardware (e.g. servers) has the direct consequence that the workload
currently running on it must be moved to another device in order to meet business continuity requirements. In
this perspective, SCP and – possibly - SCPP shall implement this sort of function at least for some low level
cloud service it implements (i.e. IaaS level). Mechanisms like virtual machine live migration can be handy for
this purpose.

Another interesting implication, more related with the project, is the ability to incorporate new hardware to an
already existing infrastructure. In general, cloud providers add new hardware to their infrastructure both for
substituting removed equipment but also for meeting requirements of higher computing power and this is
certainly a fundamental aspect that SCP must cover. On the other hand, from the project perspective,
although we cannot a-priori exclude the former reason (maybe for substituting failing equipments), the latter is
certainly worth exploring for eliciting requirements for SCPP.
According to the project plan, the Storm Clouds Project is based on a methodological framework “[...] divided
in 2 stages, involving all stakeholders and followed by the Pilots in the project. More in detail: “During the first
stage, they (i.e. project participants) will be working in the Cloudification of services (Users and stakeholders’
involvement, development and deployment of services) and validation with users. During the second stage, pilots
partners will be working as replication pilots, transferring services of their interest that were cloudified in the first
stage by another Lead Pilot. Pilots will be running then, for 4 Innovation Cycles of 9 months composing 2 stages
of 18 months each” [3].
We can imagine that the workload for the SCPP will increase according to the project evolution; it is therefore
sensible to allocate fewer physical resources in the first stage and add further physical resources later. Then,
SCP is to be designed for this evolution and allow hardware addition without requiring full re-installation re-
configuration of the software.

According to Figure 3-1 – Cloud Computing Definition, using cloud services, cloud consumers share computing
resources; the kind of resources they share strongly depends on the cloud services they are using as well as on
the implementation of the services put in place by the cloud provider. Servers can be shared using hypervisor

Version 1.0 D2.1 – Storm Clouds Platform Requirements and Specification

Page 30 of 45 © Storm Clouds 2014

based technologies or operating system-level virtualization method (e.g. LXC, see
https://linuxcontainers.org/), disk space can be shared using virtualization technologies like iSCSI and
physical network resources can be shared using Virtual Private Network (VPN) or tunnelling technologies (e.g.
GRE tunnelling). Generally speaking, in a cloud implementation, a fundamental issue is how and to what
extent to support concurrent usage of the same physical resources and, at the same time, ensure that two
different cloud users do not incidentally or maliciously interfere each other compromising the security of the
hosted applications and/or data. For this purpose, cloud systems implement multi-tenancy that can be defined
as “an architecture in which a single instance of a software application serves multiple customers. Each customer is
called a tenant”[8]. According to another but similar definition multi-tenancy is “a reference to the mode of
operation of software where multiple independent instances of one or multiple applications operate in a shared
environment. The instances (tenants) are logically isolated, but physically integrated” [9].
From the project perspective, Storm Clouds Project participants might have different objectives while using
cloud computing and the applications they propose for being ported onto a cloud platform could require
some sort of “isolation” from the others in order to meet security and/or privacy requirements. For these
reasons, SCP should be designed for supporting multi-tenancy and SCPP should take advantage of that for
providing project participants with one or more tenants they can use for hosting their applications. Cloud
solutions take advantage of multi-tenancy also for limiting the amount of resources a cloud consumer is
allowed to use. Storm Clouds Project and, more specifically, SCPP can take advantage of this feature for
optimizing the overall usage of the physical resources.

3.1.2 Essential Characteristics

NIST defines essential characteristics of cloud computing paradigm but not all the actual cloud
implementations require or simply can afford their full realization. For example, 'rapid elasticity', for an
organization providing public cloud services, might be a must but, for an organization implementing an on-
premises cloud, the allocation of resources for a certain workload could require the validation of an operator
in charge of administering and supervising the usage of the whole underlying infrastructure.

The essential characteristics are reported in the following table along with considerations from the Storm
Clouds Project perspective.

NIST Definition Storm Clouds Project Considerations

On-demand self-service: a consumer can unilaterally
provision computing capabilities, such as server time
and network storage, as needed automatically without
requiring human interaction with each service provider.

Some Storm Clouds Project’s participants are in
charge of adapting applications for running on top of
SCP. In order to streamline the process, SCP shall
implement a web-based user interface and an API
that allows them to autonomously allocate basic
computational resources like virtual machines and
virtual storage disks for installing, adapt, deploy and
run applications.

Broad network access: Capabilities are available over
the network and accessed through standard mechanisms
that promote use by heterogeneous thin or thick client
platforms (e.g., mobile phones, tablets, laptops, and
workstations).

From the project viewpoint, it is important to estimate
the bandwidth required for supporting the
applications in the SCPP and make sure that the
actual implementation takes into account both the
resource required and the project budget limitations.
In addition, albeit the technology used for accessing
applications strictly depends on their specific
implementation, SCP shall not prevent the
development/deployment of applications supporting
heterogeneous clients and protocols (multichannel
should be supported).

Resource pooling: The provider’s computing resources
are pooled to serve multiple consumers using a multi-
tenant model, with different physical and virtual
resources dynamically assigned and reassigned
according to consumer demand. There is a sense of
location independence in that the customer generally
has no control or knowledge over the exact location of
the provided resources but may be able to specify
location at a higher level of abstraction (e.g., country,
state, or datacenter). Examples of resources include
storage, processing, memory, and network bandwidth.

For what concerns multi-tenancy, the aspect has
already been covered above.
Location independence, also called location
transparency, needs some analysis.
The application assessment shows that some
applications manage sensitive information like, for
example, data regarding individuals. The European
Community have promulgated regulations aimed to
protect individuals with regard to the processing of
personal data and on the free movement of such
data [10]. These two aspects need to be taken into

https://linuxcontainers.org/

D2.1– Storm Clouds Platform Requirements and Specification Version 1.0

© Storm Clouds 2014 Page 31 of 45

NIST Definition Storm Clouds Project Considerations

account during the project.
For what concerns SCPP, a direct consequence is that
the infrastructure, used for implementing the cloud, is
provided by an entity (the infrastructure provider)
that is compliant to the above mentioned directive.
This implies, for example, that the data centre is
actually located in an EU country. Nonetheless, this
might be not sufficient; in some cases candidate
applications could be judged as “not SCPP
deployable” meaning that SCPP cannot guarantee
the security level required for the information they
manage.
As far as SCP is concerned, it should implement
mechanisms for providing cloud users with some
control on the location of computing resources and/or
data. As a matter of fact, we can imagine situations
where a project participant (e.g. a municipality)
implements its own SCP and wants to provide cloud
users with the ability to control such an aspect for
implementing a certain policy. For example cloud
users might be provided with the ability to require
that “this file shall not leave the computers deployed
in this office”. Such a future should be implementable
by SCP albeit it requires that the cloud provider (in
this case the municipality) correctly deploys and
configure SCP.

Rapid elasticity: Capabilities can be elastically
provisioned and released, in some cases automatically,
to scale rapidly outward and inward commensurate with
demand. To the consumer, the capabilities available for
provisioning often appear to be unlimited and can be
appropriated in any quantity at any time.

This is one of the most attractive promise of cloud
computing and, to some extent, is also implemented
(at least from the cloud consumer perspective) when a
cloud consumer uses a public cloud (e.g. Amazon
Web Service or HP Cloud Service)
For what concerns the project, the expectation should
be more realistic. SCPP, for example, will be
implemented taking into account the budget
limitations of the project and rapid elasticity won’t be
implemented. On the other hand, SCP could be
designed using cloud solutions that permit rapid
elasticity, to some extent. In particular, SCP could
provide cloud consumers with functions for allocating
basic computing resources (e.g. virtual machines) and
they should be provided both via a web-based UI
and an API. The latter opens the possibility of
implementing automatic provisioning of resources.

Measured service: Cloud systems automatically control
and optimize resource use by leveraging a metering
capability at some level of abstraction appropriate to
the type of service (e.g., storage, processing,
bandwidth, and active user accounts). Resource usage
can be monitored, controlled, and reported, providing
transparency for both the provider and consumer of the
utilized service.

Generally speaking, metrics are usually collected for
resource usage monitoring, capacity planning, and
service usage billing purposes.
For what concerns SCPP, resource usage monitoring is
applicable in order to highlight overloading situations
and allow the cloud provider to take some corrective
action. This can result with the optimization of the
available resources re-allocating resources to tenants
and, provided that it is permitted by the project
budget limitations, add new physical resources to the
platform.
This implies that SCP implements some basic
measurement functions aimed to monitor the usage of
physical and/or virtual resources (e.g. VCPUs, RAM,
disk space, network traffic).

Version 1.0 D2.1 – Storm Clouds Platform Requirements and Specification

Page 32 of 45 © Storm Clouds 2014

Table 3-1 – Cloud Computing Essential Characteristics

3.1.3 Deployment Models

Cloud computing paradigm, by its very nature, introduces issues regarding the control cloud consumers have
on the computing resources they use. In fact, in cloud computing, consumers put their workload and their data
‘in the hands’ of the cloud provider who provides the computing resources for managing them. By doing that,
cloud consumers give up to cloud providers both control (the ability to decide who and what can access data
and programs) and visibility (the ability to monitor that status of the resources including the access to them
by other users or programs).

NIST defines deployment models for describing to what extent a cloud user relinquishes control and visibility
to the cloud provider s/he selects; there are four deployment models (private, community, public and hybrid)
with relevant variants related to the location where the physical infrastructure is deployed (private on-site
and private outsourced, community on-site and community outsourced).

Deployment models permit an increasing level of control and visibility as shown in the figure below1:

Figure 3-2 – Cloud Computing Deployment Model – Control and Visibility

It is important saying that the actual level of control and visibility does not solely depend on the deployment
model a cloud consumer decides to adopt; it also depends on the policies and the processes the consumer
and/or the provider put in place. For example, choosing a private on-site cloud, a cloud consumer is in the
best position for implementing very strict access control policies because s/he (or the organization s/he
belongs to) physically owns the hardware infrastructure where the cloud is implemented. However it’s up to
the consumer, and/or the organization s/he belongs, to ensure that the needed access control policies are
actually implemented. To summarize, a deployment model, in itself, does only define a level of confidence a
consumer have on control and visibility on the access to the data and programs s/he puts into the cloud.

The deployment models are reported in the following table along with considerations from the Storm Clouds
Project perspective.

NIST Definition Storm Clouds Project Considerations

Private cloud. The cloud infrastructure is provisioned As mentioned above, there are two variants of this

1 Hybrid cloud, being a combination of all the other models, is not reported.

D2.1– Storm Clouds Platform Requirements and Specification Version 1.0

© Storm Clouds 2014 Page 33 of 45

NIST Definition Storm Clouds Project Considerations

for exclusive use by a single organization comprising
multiple consumers (e.g., business units). It may be
owned, managed, and operated by the organization, a
third party, or some combination of them, and it may
exist on or off premises.

model that depend on the organization in charge of
providing the physical resources for hosting the cloud
implementation. In on-site private scenarios, the
organization providing the hardware resources is the
same the cloud consumer belongs to; in outsourced
private scenarios the cloud infrastructure is provided
by an external entity. The consumer still preserves a
very high level of control because the infrastructure is
dedicated to implement a cloud for exclusive use of
the consumer’s organization. In addition, in outsourced
private scenarios, the consumer’s organization can
require the infrastructure provider puts in place
processes and technical solutions for enforcing policies
that the provider must respect.
In the project context, private cloud is applicable, to
some extent. As described in [3], some project
participants may be willing to deploy services on
equipment at their own sites, maybe because of the
kind of data managed by the applications that
require particular security measures. In such a case,
SCP design shall support the private (on-site)
deployment model.

Community Cloud. The cloud infrastructure is
provisioned for exclusive use by a specific community
of consumers from organizations that have shared
concerns (e.g., mission, security requirements, policy,
and compliance considerations). It may be owned,
managed, and operated by one or more of the
organizations in the community, a third party, or some
combination of them, and it may exist on or off
premises.

In community cloud, members of a community share
their resources for implementing a cloud that is
accessed and used by all the community participants
for some common objective. Each participant may
provide cloud services, consume cloud services or
both. Similarly to the private cloud case, community
cloud have two variants on-site community cloud,
where participant physically owns the hardware on
their sites, and outsourced community cloud, where
participants lease the cloud infrastructure from a
provider. Similarly to outsourced private cloud, also
in outsourced community cloud consumers (in this case
are also participants of the community) can require
the cloud provider to implement some policies for
increasing the level of control and/or vision they have
on the cloud resources.
In the project context, SCPP is a specific case of
outsourced cloud community: Storm Clouds consortium
is a community, consortium partners are the community
members, SCPP is a cloud providing services for them
to use. As reported in the [3], during the project, the
consortium “will define and implement common
infrastructural solutions and components for deploying
cloud-based services [...omitted...] possibly leasing
computational resources at a public cloud provider”. In
such a case, the public cloud provider is an entity
external to the community; therefore the infrastructure
is outsourced.

Public cloud. The cloud infrastructure is provisioned for
open use by the general public. It may be owned,
managed, and operated by a business, academic, or
government organization, or some combination of
them. It exists on the premises of the cloud provider.

A public cloud is a model in which a service provider
makes cloud services available to the general public
over the Internet. Actual examples of public clouds
are Amazon Web Services (http://aws.amazon.com),
Hewlett Packard Cloud Services
(http://www.hpcloud.com) and RackSpace Public
Cloud (http://www.rackspace.com/cloud). A cloud
consumer, using cloud services provided by a public
cloud, has generally very little control and visibility

http://aws.amazon.com/
http://www.hpcloud.com/
http://www.rackspace.com/cloud

Version 1.0 D2.1 – Storm Clouds Platform Requirements and Specification

Page 34 of 45 © Storm Clouds 2014

NIST Definition Storm Clouds Project Considerations

on how data are preserved and processing are
accomplished but, in return, has the illusion of
unlimited resource availability because public cloud
operators make huge investments on hardware
equipment for supporting heavy workloads.
In the project context, as already mentioned, public
cloud services could be an option for implementing
SCPP but the cloud services used by project
participants will be offered by SCPP, not directly by
the underlying infrastructure leased form a public
cloud provider.
As an additional consideration, it would be beneficial
for the applications adapted to cloud during the
project, that the technologies and the cloud solutions
used for implementing SCP are also available in the
public cloud market. In such a case, the applications
can be easily migrated to a public cloud once the
project terminates and, consequently, the SCPP is
dismantled. The effort for adapting is saved to some
extent.

Hybrid cloud. The cloud infrastructure is a composition
of two or more distinct cloud infrastructures (private,
community, or public) that remain unique entities, but
are bound together by standardized or proprietary
technology that enables data and application
portability (e.g., cloud bursting for load balancing
between clouds).

In hybrid cloud scenarios, the cloud is a composition
of two or more clouds (private, community, or public)
bound together by data and application portability.
For what concerns the project, a realistic scenario to
explore is the possibility of deploying in the cloud
(SCPP or a private SCP deployment) only parts of an
application in order to benefit of the cloud strengths
(e.g. scalability) without jeopardizing other important
aspects (e.g. security)
For example, a two layer application with a web
front-end and a database keeping sensitive
information could be deployed partially in the cloud
(i.e. the web front-end in the cloud) and partially on-
site (i.e. the database in the local traditional
infrastructure or in an on-site SCP private cloud).

Table 3-2 – Cloud Computing Deployment Models

3.1.4 Service Models

A cloud computing system provides access to different services that range from software applications, such as
email or productivity tools that can be directly used by end-users (SaaS), environments for building, deploying
and operating software applications (PaaS); and traditional computing resources, such as processing power,
storage and network connectivity (IaaS).

The deployment models that NIST defines are reported in the following table along with some explanations
and considerations from the Storm Clouds Project perspective.

NIST Definition Storm Clouds Project Considerations

Software as a Service (SaaS). The capability provided
to the consumer is to use the provider’s applications
running on a cloud infrastructure. The applications are
accessible from various client devices through either a
thin client interface, such as a web browser (e.g., web-
based email), or a program interface. The consumer
does not manage or control the underlying cloud
infrastructure including network, servers, operating
systems, storage, or even individual application
capabilities, with the possible exception of limited user-
specific application configuration settings

A cloud SaaS can be described as an application,
running on a cloud infrastructure, accessed over a
network (e.g. Internet) and implementing some
specific functions for cloud consumers. Examples of
SaaS are messaging systems (e.g. web-based mailing
systems), web-based office suites (e.g. Google docs),
customer relationship management systems,
application lifecycle management systems (e.g. HP
Application Lifecycle Management), etc. The novel
aspects of a cloud SaaS in respect to a ‘traditional’
service available via Internet and providing similar
functionally are that users are charged on a per-
usage basis and that the computing resources used

D2.1– Storm Clouds Platform Requirements and Specification Version 1.0

© Storm Clouds 2014 Page 35 of 45

NIST Definition Storm Clouds Project Considerations

for running the application are allocated on an ‘on-
demand’ basis. Usually, SaaS applications are
designed for being highly scalable and take
advantage of the underlying resources that are made
available following a cloud computing paradigm. For
example, a SaaS application providing web-office
suite functionality could store files into an Object
Storage service that is one of the services provided
by an IaaS cloud. In such a case, a SaaS application
shall explicitly use an IaaS cloud service for the
implementation but this relationship usually results
completely transparent to end-users.
Application development is neither in the SCP nor
SCPP scope. As a matter of fact, SCP is designed for
hosting applications provided by project stakeholders
but it does not implement any cloud SaaS in itself.
Applications might require some sort of adaptation
for running on top of SCP and can also take
advantage of SCP services (either IaaS or PaaS) for
implementing some feature. For example, an
application might require the implementation of
back-up of the data they manage; SCP, providing
Object Storage services (a IaaS level service), can
facilitate the implementation of such a feature with a
suitable API that is called by the application itself.
In addition, adapted applications will be
consolidated in a service portfolio that contains
“cloud-based public services that could be transferred
to other cities not taking part in the project and/or
scaled up to wider geographical scopes”[3]. SCP shall
support the portfolio with an on-line catalogue
containing templates for facilitating the adaptation
and deployment of cloud-based applications.

Platform as a Service (PaaS). The capability provided to
the consumer is to deploy onto the cloud infrastructure
consumer-created or acquired applications created
using programming languages, libraries, services, and
tools supported by the provider. The consumer does not
manage or control the underlying cloud infrastructure
including network, servers, operating systems, or
storage, but has control over the deployed applications
and possibly configuration settings for the application-
hosting environment.

A cloud PaaS implements services for facilitating the
development, testing, deploying and administration
of applications running in a cloud environment.
Applications are actually hosted in a framework that
provides tools supporting the developers and
administrators in any phase of the application
lifecycle without requiring an explicit responsibility on
the management and administration of the underlying
computing infrastructure (either physical or virtual).
Using a PaaS, an application developer can focus on
the construction of the application software and does
not take care of low level aspects related to the
machine where it eventually operates.
A cloud PaaS is usually characterized by the
computing languages, the libraries and frameworks,
the run-time environments and the development tools
it implements or supports. PaaS solutions are usually
specifically designed for supporting a certain kind of
workload: there are PaaS solutions for implementing
web applications (e.g. OpenShift and CloudFoundry),
solutions for big-data applications (Savanna),
solutions for grid-computing applications, etc. From
the application developer view point, the deployment
of an application in a PaaS cloud is as easy as
uploading a file containing all the software artefacts
that build-up the application to the PaaS cloud. The

Version 1.0 D2.1 – Storm Clouds Platform Requirements and Specification

Page 36 of 45 © Storm Clouds 2014

NIST Definition Storm Clouds Project Considerations

cloud provider, on the other hand, can receive
benefits from using a PaaS cloud solution because
usually it makes an efficient usage of the physical
resources where applications eventually run. As a
matter of fact, some PaaS cloud solutions can host
more than one application in a single (virtual)
machine implementing a sort of separated computing
environment at the same time.
In the project perspective, the application assessment
shows that all the candidate applications can be
classified as web-based or, at least, have some
components that can be classified as such. In addition,
most of them are constructed using standard and
open technologies supported by PaaS software
platform solutions available under open source
licensing (e.g. OpenShift, CloudFoudry). For those
reasons it makes sense to require that SCP
implements a sort of PaaS cloud solution in order to
facilitate both the developers and the administrator
tasks.

Infrastructure as a Service (IaaS). The capability
provided to the consumer is to provision processing,
storage, networks, and other fundamental computing
resources where the consumer is able to deploy and run
arbitrary software, which can include operating systems
and applications. The consumer does not manage or
control the underlying cloud infrastructure but has
control over operating systems, storage, and deployed
applications; and possibly limited control of select
networking components (e.g., host firewalls).

An IaaS platform is a software layer that provides
services for creating virtual resources like virtual
machines, virtual disks and virtual networks. They can
be used instead of their physical counterparts in
order to deploy and run applications. Virtual
resources are provided as services meaning that they
are created when needed, used to run applications
and destroyed when the application is no more
needed. The actual computation happens at the
physical level but physical resources and applications
are not tightly bound each other. This makes it easier
to reuse the physical infrastructure for several
purposes usually at different times.
The application assessment shows that many different
technologies have been used for implementing the
candidate applications. There are different
Operating Systems (e.g. Windows and some Linux
distributions), different languages (e.g. Java, Ruby,
PHP, Python), different database engines (e.g.
MySQL, PostgreSQL, Oracle, etc.), different
frameworks and/or libraries (e.g. PostGIS), etc; in
addition, some of the technologies are proprietary
(e.g. Windows and Oracle). At the time being, there’s
no PaaS solution covering all the technologies used
for implementing all the candidate applications,
therefore – in order to have the ability to support
most of the candidate applications – SCP should
implement IaaS services that provide more flexibility
than a certain PaaS platform.

Table 3-3 – Cloud Computing Service Types

Applications are implemented as a stack of software and hardware layers; the following list enumerates and
briefly describes the layers:

 Application Layer: it contains the logic that implements the functions delivered to the end-users (e.g. a
mail messenger implements functions for sending e-mail, administering accounts, etc.);

 Middleware Layer: it contains software tools used for implementing the application (e.g.
programming languages, database engines, frameworks, etc.);

D2.1– Storm Clouds Platform Requirements and Specification Version 1.0

© Storm Clouds 2014 Page 37 of 45

 Operating System: it is the collection of software that manages (virtualized) hardware resources and
provides common services to computer programs;

 Virtualization Layer: it contains base software for implementing virtual hardware resources (e.g.
virtual machines, virtual disks, virtual network objects);

 Hardware Layer: it contains the physical equipment for hosting the cloud platform implementing cloud
services as well as the applications running on top of it.

It’s worth noticing that in this context Virtualization Layer contains both an operating system, running directly
on top of the physical hardware, and virtualization software (e.g. hypervisor), that “creates the illusion” of
having more physical equipments than those actually available at the physical level . When the virtualization
layer is implemented (this is required for realizing a cloud IaaS but it’s optional for a cloud PaaS or a cloud
SaaS), the stack includes more than one operating systems: one (called host operating system) running on the
physical hardware and the others (called guest operating systems) running in the hypervisor context:

Figure 3-3 – Virtualization Layer

Depending on the cloud service type, cloud consumers and cloud administrators exercise different level of
control on the layers, as reported in the following table:

Type Layer Consumer Provider

SaaS

Application Limited Admin & User Control Admin Control

Middleware
No Control

Full Control Virtualization (opt.)

Operating System

Hardware

PaaS

Application Admin Control No control

Middleware Used as a service for building applicatios Admin Control

Operating System
No control

Full control Virtualization (opt.)

Hardware

IaaS

Application
Full control

No control Middleware

Operating System

Virtualization Used as a service for activating virtual resources Admin control

Hardware No control Full control
Table 3-4 – Software Stack and Provider/Consumer Scope of Control

The table suggests the high level functionality that a cloud platform should implement both for the consumers
and the provider.

In the project context, SaaS is considered out of scope but PaaS and IaaS solutions used for implementing SCP
shall implement functions for controlling and administering the resources according to the scheme reported
above. This is a very high level view of the functions to implement, yet it can be used as a guideline for
defining the SCP functional architecture described in the following paragraph.

3.2 Storm Clouds Platform Functional Architecture

This section describes the Storm Clouds Platform Functional Architecture. It’s a functional decomposition of the
system showing what functions SCP implements, how they relate to each other and the external entities (i.e.
users, systems, etc.) it interacts with.
The functional architecture in not aimed to describe how SCP is implemented, therefore it doesn’t mention what
technical solutions will be put in place (e.g. software and hardware products, deployment strategies, etc.);

Version 1.0 D2.1 – Storm Clouds Platform Requirements and Specification

Page 38 of 45 © Storm Clouds 2014

these topics will be thoroughly dealt with in a future documents. Technical information will only mentioned as
examples.

The following diagram shows the Storm Clouds Platform functional architecture:

Figure 3-4 – Storm Clouds Platform Functional Architecture

The functions are implemented for users who play different roles:

 Cloud Consumer: the user(s) or the organization(s) that uses the services provided by SCP for
implementing and deploying Application Services;

 Cloud Provider: the user(s) or the organization in charge of providing SCP services by implementing
and maintaining the cloud;

 End-User: the person who uses Application Services.

It is worth noticing that Application Services, albeit shown in the Service Layer, are not part of the SCP
architecture; they are actually hosted in the architecture, not implemented by the architecture. Application
Services indicate the set of services made available to End-Users (e.g. citizens, public servants, etc.).

3.2.1 Access Layer

The Access Layer provides access to services, both cloud services and application services.

Cloud consumers manage cloud resources both via the Self Service Web User Interface (UI) and the
Application Programming Interface (API) Front-End; the former is for manual operations, the latter for
automatic operations implemented by cloud consumers as programs running in the cloud or outside the cloud.

Functions are made available for:

 controlling the lifecycle of the IaaS virtual objects (it includes creation and deletion of virtual
machines, virtual disk storage, virtual network objects);

 uploading, downloading virtual machine images and/or application service software;

Storm Clouds Platform

Service Layer

Access Layer

Cloud Management Tier

Infrastructure as a Service

Platform as a Service

Virtualization Layer

Virtual
Machines

Virtual
Disks

Virtual
Network

Physical Layer

Servers Storage Networking

Application Services

API
Front-End

Self-Service
Web UI

Naming
(DNS)

Load
Balancing

Firewalling

Metering

Cloud Consumer End User

Cloud Provider

Monitoring

User Management

Catalogue Management

D2.1– Storm Clouds Platform Requirements and Specification Version 1.0

© Storm Clouds 2014 Page 39 of 45

 starting/stopping virtual machines and/or application services;

 Inspecting the usage of resources.

The access layer implements functions familiar to IT departments like:

 Naming Services (DNS);

 Load Balancing;

 Firewalls.

Some of these functions may be exposed to cloud consumers and used for the deployment of Application
Services.

3.2.2 Service Layer

The Service Layer actually implements the “as a Service” functions ‘materializing’ the computing resources for
hosting the application services workload.

The Infrastructure as a Service (IaaS) component implements functions for providing cloud consumers with
virtual infrastructure objects; it translates the requests coming from the Access Layer into low level operations
directed to the Virtualization Layer that, in turn, is in charge of actually providing virtual objects like virtual
machines, virtual disk storage and virtual network objects (e.g. Level 2 networks, virtual routers, etc.). IaaS
hides the complexity of the underlying virtualization technology and implements logical high-level operations
like the connection of a virtual machine to virtual networks, the attachment of a virtual disk to a virtual
machine, etc. Usually these operations require a complex list of low-level commands directed to the
Virtualization Layer: IaaS ‘bundles’ the low-level commands into single high-level commands facilitating the
implementation and use of virtual infrastructure objects.

The Platform as a Service (PaaS) component implements functions for hosting and controlling specific
Application Services hosted in the cloud. Generally speaking, PaaS solutions provide a framework for
facilitating the development and deployment of a certain kind of applications: the SCP PaaS is meant to host
web-based applications. It implements functions for up-loading and down-loading the Application Services
source code, for starting and stopping applications, for inspecting the application run-time environment (e.g.
log files, files, directories and databases used by the applications, etc.).

As shown in the diagram, there’s no tight dependency between Application Services and PaaS. Applications
can be actually deployed directly on virtual machines and can use virtual disks and virtual network objects
made available by the IaaS. This arrangement is intentional because there might be applications that cannot
be directly deployed on top of the PaaS.

On the other hand, the PaaS is deployed on top of the IaaS although this is not strictly required by PaaS
solutions (OpenShift, CloudFoundry) that can be directly installed on bare metal servers. This option is
intentional for SCP because it facilitates the management of the whole platform.

3.2.3 Virtualization Layer

The Virtualization Layer, through virtualization technologies, abstracts the physical resources and implements
virtual infrastructure objects like virtual machines, virtual disks and virtual networks. This layer is usually
implemented by software components installed directly on top of the operating system of the underlying
physical equipment.

The primary objective of the layer is decoupling the upper layers from the physical hardware; in this manner
virtual objects can be “migrated” from the physical hardware equipment where they run to another location
without ‘disturbing’ the hosted workload.

This layer is implemented by hypervisors (for implementing virtual machines), disk virtualization technologies
like iSCSI protocol based solutions (for implementing virtual disks), and network virtualization solutions, like
VPN or tunnelling solutions (for implementing virtual networks).

3.2.4 Physical Layer

The physical layer is composed of the physical hardware equipment (i.e. blade servers, networking
connections and disks) used for actually deploying the Storm Cloud Platform.

Version 1.0 D2.1 – Storm Clouds Platform Requirements and Specification

Page 40 of 45 © Storm Clouds 2014

3.2.5 Cloud Management Tier

The cloud management tier implements functions for managing and maintaining the cloud platform and is
mainly designed for the Cloud Provider.

Monitoring refers to functions for verifying the availability and the performances of the infrastructure. It is
designed for verifying the working conditions of the physical resources (e.g. blade servers and network) but
can also be useful for monitoring virtual resources (i.e. virtual machines) used for implementing advanced
cloud services like PaaS components, virtual machines running DB engines (maybe for implementing DB as a
Services components), etc.

User Management component implements functions for storing information about the Cloud Consumer(s) and
for authenticating and authorizing them to access the cloud services.

Metering refers to a set of functions for acquiring measurements about the usage of cloud resources.
Generally speaking, metering functions are implemented for billing purpose but in SCP context the main
purpose is to gather information about the resource used for running the application service and to highlight
critical situations.

Catalogue Management implements functions for storing pre-fabricated objects that cloud consumers can use
for implementing application services. These can be virtual machines with some software stack installed on top,
for example a LAMP (Linux, Apache, MySQL, Python) stack. Cloud consumer can implement their own
application services instantiating and customizing the pre-fabricated objects.

3.3 List of Requirements

This chapter defines the requirements for the Storm Clouds Platform.

For each requirement, the following information is provided:

 Id: unique identifier of the requirement;

 Description: textual description of the requirement;

 Type: classification of the requirement

o Functional (Fun), it can be derived from the logical model;

o Interface (Int) it describes the interface with the external systems and/or users;

o Operational (Ope): it specifies how the system will run and how it will communicate with the
human operators;

o Security/Privacy (Sec): it specifies the requirements for securing the system against threats of
confidentiality, integrity and availability. e.g. intrusion detection, security patches, data
encryption, multi-tenancy;

o Technical (Tech): it is related to some technical e.g. languages, databases, application/web
servers, tools)

 Reference: a reference to the ‘origin’ of the requirement.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [11].

Id Description Type Reference

010 SCP SHALL be designed for providing cloud services
through network connection

Fun, Int NIST Cloud
Computing Definition

020 SCP SHOULD adopt technical solutions that, considering
the workload of the assessed applications, optimizes the
usage of the physical resources used for the deployment

Tech NIST Cloud
Computing Definition

030 SCP SHALL allow the addition and removal of new
hardware equipment without requiring full re-
implementation and/or re-configuration of the already
deployed infrastructure

Tech, Ope NIST Cloud
Computing Definition

040 SCP SHALL implement multi-tenancy and SCPP SHALL
provide each project participants with – at least – one
tenant defining the amount of resources they are allowed

Fun, Sec NIST Cloud
Computing Definition

D2.1– Storm Clouds Platform Requirements and Specification Version 1.0

© Storm Clouds 2014 Page 41 of 45

Id Description Type Reference

to use for supporting applications

050 SCP SHALL implement multi-tenancy and SCPP SHALL
provide each project participants with – at least – one
tenant defining the amount of resources they are allowed
to use for supporting applications

Fun, Sec NIST Cloud
Computing Definition

060 SCCP SHALL provide Storm Clouds project participants
with access to cloud services it implements via Internet.
Access to cloud services, on the other hand, SHALL be
regulated with some access control mechanisms based on
credentials that partner’s personnel are provided with.

Fun, Int,
Sec

NIST Cloud
Computing Definition

070 SCP SHALL provide any user (users and administrators)
with functions for allocating and using computing
resources without directly interacting with the underlying
physical and/or virtualized infrastructure technology.
Those functions SHALL be available both from a web-
based interface and an API.

Fun, Int,
Tech

NIST Cloud
Computing Essential
Characteristics

080 SCPP SHALL provide enough network bandwidth for
supporting the applications selected for adaptation

Ope NIST Cloud
Computing Essential
Characteristics (Broad
Network access)

090 SCP and SCPP SHALL provide access to applications
from various clients, using standard ad widely adopted
interfaces.

Int NIST Cloud
Computing Essential
Characteristics (Broad
Network access)

110 SCP SHALL transparently use the physical resources
made available by the physical infrastructure for
providing the computing resources used for implementing
applications.

Fun NIST Cloud
Computing Essential
Characteristics
(Resource Pooling)

120 SCP SHALL provide the ability to have some control on
the location of the physical resources eventually used for
deploying an application.

Fun, Sec NIST Cloud
Computing Essential
Characteristics

130 SCPP SHOULD be located in an European Community
country

Sec NIST Cloud
Computing Essential
Characteristics

140 Although the cloud service provider is not provided with
the ability to control the exact location of the physical
resource used for implementing an application (e.g. which
server or which disk), the SCP SHALL provide the
provider with the ability of “labelling” physical resources
with an abstract location (e.g. physical resources in a
region, a country, etc.). It’s Cloud Platform Provider’s
responsibility to use this feature consistently.

Tech, Ope NIST Cloud
Computing Essential
Characteristics

160 SCP SHALL provide functions for monitoring the usage of
physical resources in order to highlight overloading
situations.

Ope NIST Cloud
Computing Essential
Characteristics

180 SCP SHALL implement some basic measurement functions
aimed to monitor the usage of physical and/or virtual
resources (e.g. VCPUs, RAM, disk space, network traffic).

Ope NIST Cloud
Computing Essential
Characteristics

190 SCP SHALL be designed for supporting private cloud
deployment model. This is a consequence of the request
of allowing project partners to implement their own cloud
totally or partially reusing SCP design principles.

Ope NIST Cloud
Computing
Deployment Models

200 SCPP SHALL be implemented as an outsourced
community cloud deployment possibly leasing

Ope NIST Cloud
Computing

Version 1.0 D2.1 – Storm Clouds Platform Requirements and Specification

Page 42 of 45 © Storm Clouds 2014

Id Description Type Reference

computational resources at a public cloud provider as the
underlying (virtual) infrastructure for deploying SCP
components and services.

Deployment Models

210 SCP SHOULD be implemented with technologies used for
implementing public clouds available in the market.

Tech NIST Cloud
Computing
Deployment Models

220 SCP SHOULD support hybrid cloud scenarios or – at
least – permit the implementation of hybrid scenarios
where workload of an application can be split between
part(s) running in the cloud and part(s) running in another
cloud (SCP or no SCP) or in a traditional IT infrastructure

Ope NIST Cloud
Computing
Deployment Models

240 SCP SHALL support the portfolio with an on-line
catalogue containing templates for facilitating the
adaptation and deployment of cloud-based applications.

Fun NIST Service Models

260 SCP SHALL implement a PaaS cloud solution for
supporting web applications.

Service
Delivery –
PaaS

NIST Service Models

270 SCP PaaS solution SHALL implement security mechanisms
aimed to ensure application instance separation. This
means that different instances shall run on different
execution environments that strictly prevent any
interference (e.g. data access) among them.

Sec NIST Service Models

280 SCP SHALL implement a PaaS cloud solution for hosting
the highest number of candidate applications.

Fun, Tech NIST Service Models

290 The PaaS solution provided by SCP SHALL be available
under some sort of Open Source licensing in order to
avoid vendor lock-in and allow sustainability when the
project terminates.

Tech NIST Service Models

300 The PaaS solution provided by SCP SHOULD be
available as a public cloud solution for allowing the
migration of adapted applications to a public service
provider.

Ope NIST Service Models

310 SCP SHALL implement a form of IaaS both for
supporting those applications that cannot be integrated
in the PaaS and also for implementing the PaaS solution
itself.

Fun, Tech NIST Service Models

320 The IaaS solution provided by SCP SHALL be available
under some sort of Open Source licensing in order to
avoid vendor lock-in and allow sustainability when the
project terminates.

Tech NIST Service Models

330 The IaaS solution provided by SCP SHOULD be
available as a public cloud solution for allowing the
migration of adapted applications to a public service
provider.

Ope NIST Service Models

Table 3-5 – Storm Clouds Platform Requirements

D2.1– Storm Clouds Platform Requirements and Specification Version 1.0

© Storm Clouds 2014 Page 43 of 45

4 Storm Project Methodological Framework
This chapter briefly reports some relevant information about the Storm Clouds project framework in order to
highlight aspects that have direct impact on the design of the Storm Clouds Platform (SCP) and its physical
deployment, the Storm Clouds Project Platform (SCPP).

The information reported here is meant to be used for prioritizing the implementation of functions and
features in order to meet the objective defined by the project phases and for giving some rough idea on the
required resources – human and computational - both for the SCP design and the SCPP implementation.

Storm Clouds project duration is 36 months divided in 2 subsequent 18 month phases: Lead Pilots Phase and
Replication Pilots Phase. In turn, each phase is split into two 9 months cycles.

Lead Pilots Phase is focussed on selecting and porting some candidate applications to cloud; each involved
public authority (Agueda, Manchester, Thessaloniki and Valladolid) will select one or two applications per
cycle originating a total number of applications ranging from 4 to 8 per cycle and from 8 to 16 during the
entire phase. Services are adapted to run on top of the cloud platform, technically tested and validated with
end users (i.e. citizens and public servants).

Replication Pilot Phase is aimed at consolidating a portfolio based on the applications validated in the
previous phase. Applications are generalized for being reused in other cities not taking part to the project as
well as scaled up to wider geographical scopes. In addition, each public authority involved in the project will
chose at least one service (maybe proposed by other project participants) to be adapted and deployed. The
number of total services deployed in this phase ranges from 8 to 16; they are adapted to different contexts
(cities and/or geographical areas), tested and validated with end users (i.e. citizens and public servants).

When an application is modified and/or adapted, it is necessary to provide a computing environment for the
development and a computing environment for testing; then, once the application is modified and/or
adapted, it can be moved to the production environment and accessed by the end users. In principle, when an
application is moved to production, both the development and the testing environments can be dismantled
releasing the corresponding resources that can be reused for other purposes.

Analysing the project framework, we can say that the amount of resources for development and for testing
never changes during the project lifespan: we need enough resources for adapting and testing up to 8
applications simultaneously. In reality the actual amount of resources in terms of RAM, number of CPUs and
network traffic really depends on the applications under development/testing but, for a rough estimation, we
can assume that it is a fixed amount.

On the contrary, the amount of resources for running the services in production changes according to the plan.
In the first 9 month cycle no application should be in production because the participants are busy at adapting
and migrating to cloud. In the second cycle, the applications adapted in the first cycle are moved to
production (up to 8 applications), in the third cycle the applications adapted in the second cycle are moved to
production reaching the maximum number of applications simultaneously in production, as mentioned in [3].

The following table summarizes what is described above:

Activity Pilot Phase Replication Phase

1st Cycle 2nd Cycle 3rd Cycle 4th Cycle

Development 8 8 8 0

Testing 8 8 8 0

Production 0 8 16 16
Table 4-1 – Number of Concurrent Applications in the Cloud

Another important aspect for sizing the SCPP is related to the number of users expected to use the
applications. According to [3], this should be around 5,000; at this stage, it’s hard to estimate the number of
concurrent users and the assumption is for 2%.

Version 1.0 D2.1 – Storm Clouds Platform Requirements and Specification

Page 44 of 45 © Storm Clouds 2014

5 Summary and Conclusions
This document defines the high level requirements for the Storm Clouds (Project) Platform, the computing
environment providing cloud services for deploying Storm Clouds applications.

The requirements will be analysed and refined during the next project activities with the objective of
designing a technical solution that fulfils the project needs.

This document and the upcoming more technical documents are to be considered as contributions to the project
objective of defining “useful guidelines on how to address the process” [3] of transporting application services
from “traditional” IT environments to cloud computing paradigm.

D2.1– Storm Clouds Platform Requirements and Specification Version 1.0

© Storm Clouds 2014 Page 45 of 45

References

[1] "Storm Clouds - Project Web Site," [Online]. Available: http://stormclouds.eu/. [Accessed July 2014].

[2] "Storm Clouds Project - European Commission Project Page," [Online]. Available:
http://ec.europa.eu/digital-agenda/en/storm-clouds-project-cloud-public-services. [Accessed July
2014].

[3] "Surfing Towards the Opportunity of Real Migration to CLOUD-based public Services," STORM CLOUDS
Consortium, November 2013.

[4] "CORDIS - Free and open source software activities in European Information Society initiatives," [Online].
Available: http://cordis.europa.eu/fp7/ict/ssai/foss-home_en.html. [Accessed Apr 2014].

[5] "LAMP (software bundle) - Wikipedia Page," [Online]. Available:
http://en.wikipedia.org/wiki/LAMP_%28software_bundle%29. [Accessed Apr 2014].

[6] P. Mell and T. Granc, "The NIST Definition of Cloud Computing," National Institute of Standards and
Technology, September 2011.

[7] T. G. R. P.-C. J. L.Badger, "Cloud Computing Synopsis and Recommendations," National Institute of
Standards and Technology, May 2012.

[8] "Multy-tenanancy Definition - Whatis Page," [Online]. Available:
http://whatis.techtarget.com/definition/multi-tenancy. [Accessed Apr 2014].

[9] "Multitenancy definition - Gartner Page," [Online]. Available: http://www.gartner.com/it-
glossary/multitenancy. [Accessed Apr 2014].

[10] Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995 on the protection
of individuals with regard to the processing of personal data and on the free movement of such data.

[11] S. Bradner, "RFC 2119: Key words for use in RFCs to Indicate Requirement Level," 1997. [Online].
Available: https://www.ietf.org/rfc/rfc2119.txt. [Accessed Apr 2014].

