

Project Acronym: STORM CLOUDS

Grant Agreement number: 621089

Project Title: STORM CLOUDS – Surfing Towards the Opportunity of Real Migration to cloud-based public
services

Legal Notice and Disclaimer

This work was partially funded by the European Commission within the 7th Framework Program in the context of the CIP
project STORM CLOUDS (Grant Agreement No. 621089). The views and conclusions contained here are those of the
authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed
or implied, of the STORM CLOUDS project or the European Commission. The European Commission is not liable for any
use that may be made of the information contained therein.

The Members of the STORMS CLOUDS Consortium make no warranty of any kind with regard to this document, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Members of the
STORMS CLOUDS Consortium shall not be held liable for errors contained herein or direct, indirect, special, incidental or
consequential damages in connection with the furnishing, performance, or use of this material.

© STORMS CLOUDS Consortium 2014

Deliverable 4.2

Interoperability and Multilinguality Report

Workpackage: WP4

Version: 1.1

Date: 08/01/2015

Status: Project Coordinator accepted

Dissemination Level: PUBLIC

Editor: Alkiviadis Giannakoulias (ED)

Autors: Alkiviadis Giannakoulias (ED)

Reviewed by: Mario Aznar (RTDI)

Version 1.1 D4.2 – Interoperability and Multilinguality Report

Page 2 of 49 © Storm Clouds 2014

The STORM CLOUDS Project

Surfing Towards the Opportunity of Real Migration to Cloud-based public Services (STORM CLOUDS) is
project partially funded by the European Commission within the 7th Framework Program in the context of the
CIP project (Grant Agreement No. 621089).

The project has the objective of exploring the shift to a cloud-based paradigm for deploying services that
Public Authorities currently provide using ‘more traditional’ IT deployment models. In this context, the term
“services” refers to applications, usually made available though Internet, that citizens and/or public servants
use for accomplishing some valuable task.

The project aims to define useful guidelines on how to implement the process of moving application to cloud
and is based on direct experimentation with pilot projects conducted in, at least, the four cities of the
consortium.

The implementation of the pilots will use a common centralized infrastructure that provides the computing
resources for running applications; this can be considered as “the digital space where things will be done” [1].
It’s worth saying that, in order to address the main objective of the project (i.e. to shift to a cloud-based
paradigm), computing resources shall be made available on an “as-a-Service” paradigm, meaning that
resources are activated and de-activated on an on-demand basis. For this reason, in addition to provide the
physical equipment used for running applications (i.e. server machines, mass storage and network connections),
the project requires the implementation of a cloud computing platform that actually implements the “as-a-
Service” paradigm.

Project Consortium

Participant Role/Responsibilities Acronym Country

Ariadna Servicios Informáticos, S.L. Co-ordinator ASI Spain

Hewlett Packard Italiana S.r.l. Participant HP Italy

EUROPEAN DYNAMICS Advanced Systems of
Telecommunications, Informatics and Telematics

Participant ED Greece

Research, Technology Development and Innovation,
S.L

Participant RTDI Spain

Aristotelio Panepistimio Thessaloniki Participant AUTH Greece

Alfamicro Sistemas de Computadores LDA Participant Alfamicro Portugal

Manchester City Council Participant Manchester United
Kingdom

Ayuntamiento de Valladolid Participant Valladolid Spain

City of Thessaloniki Participant Thessaloniki Greece

Câmara Municipal de Águeda Participant Águeda Portugal
Table 0-1 – Storm Clouds Consortium

D4.2 – Interoperability and Multilinguality Report Version 1.1

© Storm Clouds 2014 Page 3 of 49

Authoring
Role Name Organisation

Edited by Alkiviadis Giannakoulias ED

Author Alkiviadis Giannakoulias ED

Reviewed by Mario Aznar RTDI

Version Control
Modified by Date Version Comments

Alkiviadis Giannakoulias 15.07.2014 0.1 Initial version

Alkiviadis Giannakoulias 01.08.2014 0.2 Second version

Alkiviadis Giannakoulias 19.09.2014 0.3 Third version

Alkiviadis Giannakoulias 31.10.2014 0.4 Ready for review

Alkiviadis Giannakoulias 07.11.2014 1.0 Version 1.0 submitted to European Commission

Oscar García 08.01.2015 1.1 No content modification, new format adopted for
project deliverable documents.

Version 1.1 D4.2 – Interoperability and Multilinguality Report

Page 4 of 49 © Storm Clouds 2014

Executive Summary

Public Authorities have much to gain but they must have confidence that the benefits can be achieved without
compromising core requirements and institutional values. Public sector entities, such as government, education,
and healthcare organizations are embracing clouds as a way to increase their operational efficiency and
productivity, while at the same time maximizing investments and lowering costs. It also gives them the
opportunity to be more agile and innovative by consolidating, virtualizing, and automating their ICT resources.

The project aims to define useful guidelines on how to address the process of moving towards a cloud-based
solution for Public Authorities and policy makers. These guidelines will be prepared based on direct
experimentation in at least 4 European cities, creating a set of relevant use cases and best practices.

Section 4 focuses on the multilinguality support that the STORM CLOUDS Platform (SCP) applications should
present in order to be used in other cities worldwide. A list of relevant guidelines is then presented since the
implementation of these guidelines will increase the portability and reuse of software.

D4.2 – Interoperability and Multilinguality Report Version 1.1

© Storm Clouds 2014 Page 5 of 49

Table of Contents

Authoring.. 3
Version Control ... 3
Table of Contents ... 5
List of Figures .. 6
List of Tables ... 7
Abbreviations .. 8
1 Introduction .. 9
2 Cloud Computing ... 11
3 Interoperability .. 13
4 Multilinguality - Principles and Guidelines ... 15

4.1 Introduction ... 15
4.2 Definitions .. 15

4.2.1 Internationalisation and Localisation ... 15
4.2.2 Locale .. 15

4.3 Multilinguality Principles ... 15
4.3.1 Principle 1: Software Should Be Multilingual By Design ... 15
4.3.2 Principle 2: Multilingual Applications Should Support Additional Languages without
Reengineering .. 16
4.3.3 Principle 3: Isolate all the User Interface from the Code at the Source Level and at the Load
Module Level .. 16
4.3.4 Principle 4: Identify and Adapt All Elements of the User Interface .. 16
4.3.5 Principle 5: Plan the Storage and Management of Multilingual User Interface Elements 18
4.3.6 Principle 6: Decide the Best Way to Select the Locale ... 18
4.3.7 Principle 7: Presentation of Data Should Follow the Customs of the Locale 19
4.3.8 Principle 8: Processing and Saving of Data Should Follow the Customs of the Locale 19

4.3.8.1 Sorting and String Comparison .. 20
4.3.9 Principle 9: Reuse Standards Such As Program Libraries for Localisation .. 21
4.3.10 Principle 10: Include Documentation as Part of Localisation Efforts ... 21
4.3.11 Principle 11: Use Unicode Where Possible .. 21
4.3.12 Principle 12: Consider What Fonts to Use and How to Use Them .. 22

4.4 Multilingualism Checklist ... 22
4.5 STORM CLOUDS Use Cases .. 26

4.5.1 Municipio de Agueda – Multilingualism Checklist ... 26
4.5.2 Ayuntamiento de Valladolid - Multilingualism Checklist ... 31
4.5.3 City of Thessaloniki - Multilingualism Checklist .. 36

5 Conclusion .. 41
References ... 42
Annex A ApplicationProgramming Interface .. 45

A.1 Secure APIs ... 45
A.2 Applications APIs ... 46
A.3 Cloud APIs ... 46

A.3.1 Secure Cloud APIs ... 46
A.3.2 RESTful API ... 46

A.3.2.1 RESTful API Standards ... 47
A.3.3 OpenStack RESTful API .. 47
A.3.4 OpenStack Open Cloud Computing Interface .. 47
A.3.5 API Management ... 48

A.4 Cloud Storage Gateways ... 49

Version 1.1 D4.2 – Interoperability and Multilinguality Report

Page 6 of 49 © Storm Clouds 2014

List of Figures

Figure 2-1: The five characteristics of cloud computing ... 11

D4.2 – Interoperability and Multilinguality Report Version 1.1

© Storm Clouds 2014 Page 7 of 49

List of Tables

Table 1-1 – Storm Clouds Consortium ... 2
Table 4-1: Amount of space required for translated text (Oracle) .. 17
Table 4-2: Unicode Common Encoding Systems .. 22
Table 4-3: Multilingualism Checklist-1 ... 23
Table 4-4: Multilingualism Checklist-2 ... 23
Table 4-5: Multilingualism Checklist-3 ... 24
Table 4-6: Multilingualism Checklist-4 ... 24
Table 4-7: Multilingualism Checklist-5 ... 24
Table 4-8: Multilingualism Checklist-6 ... 24
Table 4-9: Multilingualism Checklist-7 ... 25
Table 4-10: Multilingualism Checklist-8... 25
Table 4-11: Multilingualism Checklist-9... 25
Table 4-12: Agueda Program Specifications Checklist ... 26
Table 4-13: Agueda Generic Code Checklist.. 27
Table 4-14: Agueda Source Files Checklist .. 27
Table 4-15: Agueda Character Set Checklist .. 28
Table 4-16: Agueda International Testing Standards Checklist ... 28
Table 4-17: Agueda Regional Specification Checklist ... 29
Table 4-18: Agueda Language Checklist ... 29
Table 4-19: Agueda Appearance/Layout Checklist .. 29
Table 4-20: Agueda Functionality Checklist ... 30
Table 4-21: Valladolid Program Specifications Checklist ... 31
Table 4-22: Valladolid Generic Code Checklist ... 32
Table 4-23: Valladolid Source Files Checklist ... 33
Table 4-24: Valladolid Character Set Checklist ... 33
Table 4-25: Valladolid International Testing Standards Checklist .. 34
Table 4-26: Valladolid Regional Specification Checklist .. 34
Table 4-27: Valladolid Language Checklist .. 34
Table 4-28: Valladolid Appearance/Layout Checklist ... 35
Table 4-29: Valladolid Functionality Checklist .. 35
Table 4-30: Thessaloniki Program Specifications Checklist ... 36
Table 4-31: Thessaloniki Generic Code Checklist ... 37
Table 4-32: Thessaloniki Source Files Checklist ... 37
Table 4-33: Thessaloniki Character Set Checklist ... 38
Table 4-34: Thessaloniki International Testing Standards Checklist .. 38
Table 4-35: Thessaloniki Regional Specification Checklist .. 39
Table 4-36: Thessaloniki Language Checklist .. 39
Table 4-37: Thessaloniki Appearance/Layout Checklist ... 39
Table 4-38: Thessaloniki Functionality Checklist .. 40

Version 1.1 D4.2 – Interoperability and Multilinguality Report

Page 8 of 49 © Storm Clouds 2014

Abbreviations

Acronym Description

API Application Programming Interface

CDMI Cloud Data Management Interface

CLI Command Line Interface

CLI Command Line Interface

DNS Domain Name System

HTTP HyperText Transfer Protocol

IaaS Infrastructure as a Service

IT Information Technology

ITS Internationalization Tag Set

KVM Kernel-based Virtual Machine

NIST National Institute of Standards and Technology

N/A Not Available

OCCI Open Cloud Computing Interface

PC Personal Computer

PaaS Platform as a Service

SaaS Software as a Service

SSL Secure Socket Layer

UI User interface

Unicode
CLDR

Unicode Common Locale Data Repository

VM Virtual Machine

D4.2 – Interoperability and Multilinguality Report Version 1.1

© Storm Clouds 2014 Page 9 of 49

1 Introduction
The main focus of this document is to describe the necessary steps to achieve interoperability between the
offered applications and the pilot cities, as well as the actions taken by the offered services in order to
address the needs for multilingual content.

The applications exposed web services together with their open Application Procedure Interfaces (REST APIs)
as well as the OpenStack APIs will be presented, taking into consideration the requirements and the
specification of the Storm Clouds Platform (SCP).

The content includes the multilingual features and technologies used to support application multilingualism
along with an extensive list of principles and checklists when globalizing services for a wider audience and
when localizing services for a specific market.

The City department responsible for the STORM project, Manchester Digital Development Agency, has been
under review, undergoing “service redesign” since January this year. The plan was that technical staff would
remain within the team until March 2015. In October this year, the management revised the timetable and
the MDDA technical staff was redeployed to the internal ICT services in late October. As a consequence the
project management team now has no internal technical expertise. The consequence is that MCC could no
longer proceed with the Nodespot application or commit to the cloudification of applications going forward.
The STORM project has been discussed with the senior management of MCC. This is now a topic of discussion
between the Coordinator and the EC Project Officer.

Version 1.1 D4.2 – Interoperability and Multilinguality Report

Page 10 of 49 © Storm Clouds 2014

D4.2 – Interoperability and Multilinguality Report Version 1.1

© Storm Clouds 2014 Page 11 of 49

2 Cloud Computing
“Cloud computing is an evolving paradigm.” [29]

The National Institute of Standards and Technology (NIST) in September 2011 released a Special Publication
SP 800-145, in which it defined cloud computing as:

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool
of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management effort or service provider interaction. This cloud
model is composed of five essential characteristics, three service models, and four deployment models. [29]

Cloud computing intends to provide a baseline for discussion from what is cloud computing to how to best use
cloud computing. [29]

Cloud computing differs from conventional computing in a number of ways. As Figure 2-1 illustrates there are
five characteristics of cloud computing and are defined as follows:

1. On-demand self-service. Ability for users to request and use resources as needed;

2. Broad network access. Network accessibility from various types of hardware and software;

3. Resource pooling. Sharing of cloud resources by several services, and allocation as needed to meet
changing demands;

4. Rapid elasticity. Expansion and reduction to meet varying resources demand;

5. Measured service. Charge according to metered resource usage.

Figure 2-1: The five characteristics of cloud computing

Furthermore, NIST identifies a simple and unambiguous taxonomy of three “service models” available to cloud
Consumers (Infrastructure-as-a-Service (IaaS), Platform-as-a Service (PaaS), Software-as-a-Service (SaaS))
and four "cloud deployment modes" (Public, Private, Community, and Hybrid) that together categorize ways
to deliver cloud services.

Version 1.1 D4.2 – Interoperability and Multilinguality Report

Page 12 of 49 © Storm Clouds 2014

D4.2 – Interoperability and Multilinguality Report Version 1.1

© Storm Clouds 2014 Page 13 of 49

3 Interoperability
Interoperability is achieved when systems are able to provide services to – and use services of – other
systems.

However after discussion and project progress it was decided that due to the fact that:

a) Selected applications won’t communicate with each other neither they will provide services to other
systems/applications;

b) Application perception in terms of storage and network characteristics does not differ from the
traditional IT model;

c) Integration with other cloud platforms and CSPs is not foreseen;

interoperability is not going to be covered in this version of the deliverable.

However, the reader can find more on general interoperability concerns and how to achieve interoperability
in the cloud on Error! Reference source not found..

Version 1.1 D4.2 – Interoperability and Multilinguality Report

Page 14 of 49 © Storm Clouds 2014

D4.2 – Interoperability and Multilinguality Report Version 1.1

© Storm Clouds 2014 Page 15 of 49

4 Multilinguality - Principles and Guidelines

4.1 Introduction

Multilinguality is a critical feature of the STORM CLOUDS Platform (SCP) in order for the cloudified
applications be used in other cities worldwide.

Adding support for other languages at a later stage is often much more difficult if language is not considered
as a key part of the software architecture from the start.

Adhering to best practices in internationalising software means that the possibilities for creating a
consolidated portfolio of validated cloud applications are increased. The implementation of these guidelines
will increase the portability and reuse of software.

4.2 Definitions

4.2.1 Internationalisation and Localisation

It is important to notice that there are two separate processes involved in development of software for use
in multiple languages, cultures and countries:

1. Internationalization (I18N): is the process of designing a software application so that it can potentially
be adapted to various languages and regions without engineering changes. [5]

Effectively that is, enabling our application to handle multiple languages without changes to the
code.

2. Localization (L10N): is the process of adapting a software application to different locales so it
appears native in the users in every way, including the language, numbers, dates, currency, and
images.

So while internationalisation concerns itself with providing the system to allow the use of more than one
language, localisation (which is potentially performed multiple times, for different locales) uses the
infrastructure or flexibility provided by internationalization (which is ideally performed only once, or as an
integral part of ongoing development). [5]

Localisation goes beyond the translation of the user interface as it deals also with a lot of other differences
between locales. For example:

 Differences in number format such as the type and position of decimal separators.

 Differences in date format types (US: MM/DD/YY vs. European DD/MM/YY) and different working
days

 Differences in currencies and measuring units

4.2.2 Locale

A locale is a set of parameters (collection of user preferences) applicable to a specific language country and
or culture. Locales identifiers usually consist of a language, often combined with a country and occasionally
with a further parameter specifying the code set and modifier; for example en_GB is the locale identified for
English for the UK. This means a differentiation can be made between English (US) and English (UK). The locale
consists of a number of elements including for example the name and ISO identifier of the language, the
currency, sorting requirements, numeric preferences such as thousands separators , the calendars to be used
and other elements such as text direction (left-to-right or right-to-left, horizontal or vertical) etc

4.3 Multilinguality Principles

The following principles and relevant guidelines were produced by the Conference of European Statisticians
Sharing Advisory Board and the UNECE Secretariat, with input and peer review from Participants in the 2011
joint UNECE / Eurostat / OECD meeting on Management of Statistical Information Systems (MSIS) [6]

4.3.1 Principle 1: Software Should Be Multilingual By Design

As already identified multilinguality should be designed and tested rather than retrofitted.

Version 1.1 D4.2 – Interoperability and Multilinguality Report

Page 16 of 49 © Storm Clouds 2014

This means that during the initial software requirements specification phase, the requirement for software
multilinguality should be included. When it is included at this stage of the software development lifecycle, it is
developed and tested throughout the development lifecycle, thus providing a higher quality
application/solution than if the language requirements was added at the end of the process.

Requirements specifications should include whether more than one language should be stored, presented and
output at one time, for example in a bilingual country; this has an impact on how multilingual applications are
implemented.

4.3.2 Principle 2: Multilingual Applications Should Support Additional Languages without
Reengineering

For applications designed to accept use of multiple languages, they should facilitate the introduction of new
languages without having to be extensively rewritten. The application should be designed where possible with
the ability to adapt to add new languages.

It is recommended to provide multilingual systems if possible with one set of binaries, so that the code is
consistent while reducing the costs of installation, support etc, as only one version needs to be maintained. This
however, poses a challenge in that display elements need to be designed to accommodate varying languages
and lengths that could increase the size of the application.

4.3.3 Principle 3: Isolate all the User Interface from the Code at the Source Level and at the
Load Module Level

Separating the User interface (UI) from the code makes the rest of the application effectively language
neutral, which has a number of benefits, such as:

 Addition of new languages or changes to the user interface does not require recompiling or rewriting
of the code.

 Translators can work without needing knowledge of the code or logic of the program.

As an example we should be using string variables instead of string constants that are then loaded based on
the selected locale or language.

We can achieve isolation in many ways, and the technique used will depend heavily on the system and tools
that are used to create and present the messages and dialog boxes.

After the UI is translated into other languages, the question arises as to which version is required by the users.
If the UI is isolated from the executable code at the load module level, it is possible for the appropriate
language version of the UI to be loaded at execution time.

An essential requirement for a properly multilingual application is to separate the translatable text from the
code, thus avoiding code duplication, allowing localizers and developers to work on updates simultaneously
and thus removing the possibility of damaging code during translation (commonly referred to as keeping the
presentation and business logic separate). To achieve this, developers should take the text out of the code
and place in resource files, like a ResW or ResJSON file.

4.3.4 Principle 4: Identify and Adapt All Elements of the User Interface

When designing the UI, a designer should keep in mind that this also includes not only the text used in the UI,
since languages changes can affect:

 the layout of the user interface such as the buttons,

 the size of the of the application window,

 labels. For example “Click here” (10 letters) translates to “Klicken Sie hier” in German (16 letters).

Bellow is a guide to the amount of space required for translated text from Oracle’s “Understanding
Application Development Guidelines”:

Number of English Characters Additional Space Required

1 character 400 percent or 4 characters.

2 – 10 characters 101 – 200 percent.

11 – 20 characters 81 – 100 percent.

D4.2 – Interoperability and Multilinguality Report Version 1.1

© Storm Clouds 2014 Page 17 of 49

21 – 30 characters 61 – 80 percent.

31 – 70 characters 31 – 40 percent.

More than 70 characters 30 percent.

Table 4-1: Amount of space required for translated text (Oracle)

Room for expansion needs to be included in menus, labels and dialogs. It is recommended not to overcrowd
text in forms and applications. This allows translated elements to display effectively. In order to achieve that
we should use relative sizing for elements such as label boxes, containers etc. instead of fixed sizing.

Regarding icons and graphics, to allow translation we should restrict or avoid the use of embedded text.
Instead any text used should be drawn from string variables. Moreover we should avoid humour, puns, slang,
and special, mythological, and religious symbols in icons as well as hand gestures or body positions.

The more details we show, the more an icon may unintentionally offend some users. Furthermore, a complex
icon is not clear on a low-resolution display, which reduces its usefulness. Hence, we should suppress
nonessential details in icons.

A national flag is used to symbolize a nation or country/region. Flags are nationalistic and may represent
ideals, boundaries and political beliefs but they are not very precise in their connotation. Flags are usually
used in software as a graphical way to represent language. The problem is they do not accurately represent
languages. For example, German, French, and Italian are spoken in Switzerland so which language does the
Swiss flag represent? Using national flags to represent a language is not acceptable in a country/region that
uses the language but has a different flag. A much better solution is to use the interfaces provided on the
platform to express the name of the language and country in English, in the selected language, or in any other
language selectable on the platform. Hence, as a general guideline we should avoid the use of national flags
in icons.

Accelerator keys, menu shortcuts etc. also need to be adapted. Shortcuts should be adapted for different
languages; this requires the storing of the shortcut keys as part of the user interface. Shortcut keys also need
to be accessible from different keyboards. This requires checking keyboard layouts for different locales, and
can be retrieved using the following code as sample, where we send ‘a’ to textbox and read it back:

var lastKeyPressed = 0;

var keyboardLang=’’;

function sendKey()

{

 var WshShell = new ActiveXObject("WScript.Shell");

 WshShell.SendKeys('a');

}

function getCurLayout()

{

 sendKey();

 setTimeout("lastKeyLang()",10);

}

function lastKeyLang()

{

 Switch(lastKeyPressed){

 case 97:

 keyboardLang = 'EN';

 break;

 case 945:

 keyboardLang = 'EL';

 break;

 }

}

document.onkeypress = saveLastKey;

function saveLastKey()

{

 lastKeyPressed = window.event.keyCode;

Version 1.1 D4.2 – Interoperability and Multilinguality Report

Page 18 of 49 © Storm Clouds 2014

}

Code 1: Detecting Keyboard Layout

4.3.5 Principle 5: Plan the Storage and Management of Multilingual User Interface Elements

User interface elements should be maintained in an accessible and trackable format. This can be achieved
through a resource file format, or a database table. The storage should include metadata regarding the
interface elements such as comments, context, IDs etc.

IDs allow the tracking of the translatable elements and also improve the possibility of their reuse between
versions or separate applications. When working with XML for example it is recommended by the
Internationalization Tag Set (ITS), that translatable text should be stored in elements rather than attributes to
allow unique id’s, comments etc.

Since string elements, required for different languages, differ in length and therefore size we should ensure
that storage elements can expand to accommodate strings in different languages1.

Messages should be stored as complete sentences rather than reconstructed from keywords, because the
order of messages can change between languages. Similarly usage of ordinals with numbers should be
avoided. For example, instead of “The 1st item is:”, use “Item 1:”.

A default language should be specified in all cases so that, at a minimum, some message is displayed in the
event of missing text or images. The user should have some notification that the element is missing in their
requested language, while the missing translation should be logged as a system error.

Always use external style sheets to define styles for a web application. We should also avoid using styling
tags such as “em” and “strong”. Instead we should do it by externalizing the style.

4.3.6 Principle 6: Decide the Best Way to Select the Locale

By default, the global locale of Web content will always match the following:

 The user locale of the hosting server for HTML or Dynamic HTML (DHTML) pages

 The system locale of the hosting server for Active Server Pages (ASP)

and should be used to select the most appropriate locale for the user initially.

When it comes to multilingual Web design, it's important to represent the data in the client-side format rather
than defaulting to the server-side setting. For example if our server is hosted on an English machine with an
English (United States) user locale, but its content is viewed by an English (United Kingdom) user, then the date
format should change from mm/dd/yy (United States) to dd/mm/yy (United Kingdom). However, we should
also allow users to select the date and time format by themselves together with the time zone.

To achieve that, multilingual Web applications use a technique called browser detection (also known as
browser sniffing) to obtain the default language in which content should be represented, as well as the locale
in which the data formatting should follow its standards.

Once locale is determined users must be given the opportunity to select and change their locale. Applications
that require users to identify themselves, should save the preferred locale and use the same preference in the
future, otherwise they should remember the locale selected and continue using it during the session.

Information regarding language choice is sent to the server in the form of a server variable known as
"HTTP_ACCEPT_LANGUAGE" and can be retrieved:

1. In ASP with VBScript or Jscript2 with the following code:

Dim accept_language = Request.ServerVariables("HTTP_ACCEPT_LANGUAGE");

Dim accept_charset = Request.ServerVariables("HTTP_ACCEPT_CHARSET");

Or in Jscript

var accept_language = Request.ServerVariables("HTTP_ACCEPT_LANGUAGE");

var accept_charset = Request.ServerVariables("HTTP_ACCEPT_CHARSET");

1 See 4.3.1 paragraph 3 and 4.3.3 paragraph 1for further discussion on saving multilingual data

2 JavaScript implemented by Microsoft

D4.2 – Interoperability and Multilinguality Report Version 1.1

© Storm Clouds 2014 Page 19 of 49

Code 2: Language Choice using HTTP Header Information (VBScript or Jscript)

2. In Java Servlet or JSP with the following code:

String accept_language = request.getHeader("accept-charset");

String accept_charset = request. getHeader ("HTTP_ACCEPT_CHARSET");

Code 3: Language Choice using HTTP Header Information (Java Servlet or JSP)

3. In Perl with the following code:

$accept_language = $ENV{"HTTP_ACCEPT_LANGUAGE"};

$accept_charset = $ENV{"HTTP_ACCEPT_CHARSET"};

Code 4: Language Choice using HTTP Header Information (Perl)

4. In PHP with the following code:

$accept_language = $_SERVER["HTTP_ACCEPT_LANGUAGE"];

$accept_charset = $_SERVER["HTTP_ACCEPT_CHARSET"];

Code 5: Language Choice using HTTP Header Information (PHP)

Knowing the browser language can be used to control the content of the web application. For example we
can:

 Change the locale of the page, which will affect the display of the date, time, number, percent, and
currency formats

 Query a database for content (assuming application is database-driven)

in case we select multiple languages, the HTTP Header HTTP_ACCEPT_LANGUAGE will look like:

el,en-us;q=0.8,de=0.6,it;q=0.4,es;q=0.2

Locales are comma separated Greek, English (United States), German, Italian (Italy), and Spanish. The "q="
represents the priority of each language to help create a fallback mechanism.

Ideally users should be able to change locales anytime during run time without the application needing to
restart in order to accept locales change.

Users should be able to select their own input method, such as the keyboard layout, to allow them to enter
characters using the key combinations that they are used to (Code 1).

4.3.7 Principle 7: Presentation of Data Should Follow the Customs of the Locale

Presentation of data differs between locales. Some of most common areas where differences occur are:

(1) Numbers. Position of decimal separators, language ordinality, number of significant digits;

(2) Dates. Different format types, calendars used and different working days;

(3) Measuring Units. Imperial, metric as well as placement of currency identifier;

(4) Text Input and Layout. Text can be displayed in different directions e.g. right to left;

(5) Date/Time Format. Time zones, date formats (MM/DD/YY, or other);

(6) Name formats, titles used e.g. Mr, Mme; layout of names, forename first or last name;

(7) Address & telephone formats. Addresses entered in the desire language, ordering of address fields
(Street name first etc.), availability and format of postcodes, Country names;

Developers should be aware of and take into account possible differences. Care should be taken that the
application does not rely on how things are presented. Outputs should be able to display the required
character sets.

4.3.8 Principle 8: Processing and Saving of Data Should Follow the Customs of the Locale

When we process data within our applications we should take account of the possible differences between
locales. In order to do that the following table summarizes the functions that when used can differ between
locales [10]:

 Input and saving

Version 1.1 D4.2 – Interoperability and Multilinguality Report

Page 20 of 49 © Storm Clouds 2014

o Can all characters be input and saved?

o Are different keyboard layouts facilitated?

o Are we relying on single characters for separate keystrokes that may not be available on all
keyboards?

 Validation rules should allow the input of foreign characters

o Postal codes should not return error messages.

 String comparison:

o The search and sort order used should be that of the current user preferences.

o We should use locale dependent string sorting functions where available when comparing
locale dependent text (such as strcomp). Standard String comparison functions may not take
account of localised sort orders.

o Searching and other string functions should be by character and not by byte size due to
variable character byte sizes.

o Where text is not locale dependent use non locale dependent string functions

 String manipulation

o Line breaks, spacing etc differ, don’t rely on a standard break in the processing.

o Avoid string concatenation.

 String sorting

o Sorts differ between different cultures and alphabets.

o There may be more than one sort order available, e.g. German phone book order.

o Unicode sort order does not match linguistic sort order or expected binary sort ordering. We
should not rely on an assumed sort order.

o Decide whether searches over data in multiple languages should be allowed.

 This may be required in multilingual countries such as Switzerland

 A dominant search order should be defined.

o How should accented characters be handled in searches?

 Be aware of possible differences with database sort orders and the collations used

 Currencies

o Store the currency amount along with currency identifiers.

o Should multiple currencies be able to be stored?

 Measurement units

o Store the measurement unit along with the measurement.

4.3.8.1 Sorting and String Comparison

Different languages have different sort orders. Moreover, different cultures/countries using the same
alphabet may sort words differently. In Swedish, for example, some vowels with an accent (Æ) sort after "Z,"
whereas in other European countries the same accented vowel comes right after the nondiacritic vowel.
Languages that include characters outside the Latin script have special sorting rules.

Sort order can be case-sensitive or case-insensitive.

Sort order can ignore or consider diacritics3.

String sorting and comparison are language-specific, even for Latin based languages, there are different
composition and sorting rules. Thus we should not rely on code points to do proper sorting and string
comparison.

Sort order can be phonetic or it can be based on the appearance of the character. For example, sort order
can be based on the combination of letters into a single character, as in traditional Spanish, where ch is a
distinct character that comes after c, meaning that the correct order is: cerveza, colorado, cherimoya. This
means that the letter c cannot be sorted until we check whether the next letter is an h.

Comparison and sorting are related tasks.

3 A diacritic is a mark near or through a character or combination of characters that indicates a different sound than the
sound of the character without the diacritic. For example, the cedilla (,) in façade is a diacritic. It changes the sound of c.

D4.2 – Interoperability and Multilinguality Report Version 1.1

© Storm Clouds 2014 Page 21 of 49

Comparing and sorting strings in Java is a bit tricky, and should be done with some care, especially when
working with localized text.[12]

There are two fundamentally different ways of comparing strings in Java:

 simple Unicode ordering - used by String4

 localized ordering (the kind expected by an end user) - used by Collator5

This causes problems, because:

 there are only occasional mismatches between the two styles

 it's easy to forget to apply the distinction, when needed

Commonly used String methods such as:

 String.equalsIgnoreCase(String)

 String.compareTo(String)

can be dangerous to use, depending on the context. The reason is that programmers tend to apply them to
tasks they really aren't meant for, simply out of habit.

The fundamental difference is that localized comparison depends on Locale, while String is largely
ignorant of Locale. [12] Here is a quote from The Java Programming Language by Arnold, Gosling, and
Holmes:

"You should be aware that internationalization and localization issues of full Unicode strings are not
addressed with [String] methods. For example, when you're comparing two strings to determine which is
'greater', characters in strings are compared numerically by their Unicode values, not by their localized notion
of order."

The only robust way of doing localized comparison or sorting of Strings, in the manner expected by an end
user, is to use a Collator, not the methods of the String class.

With PHP we should use String comparisons using a "natural order" algorithm, such as:

$arr1 = $arr2 = array("img12.png", "img10.png", "img2.png", "img1.png");

usort($arr1, "strnatcmp");

print_r($arr1);

natsort($arr2);

print_r($arr2);

Code 6: PHP String Sorting

4.3.9 Principle 9: Reuse Standards Such As Program Libraries for Localisation

Standard locales should be used in preference to defining customised settings. Standard locale information
can be accessed through many development libraries and resources. The Unicode Common Locale Data
Repository is an example of a comprehensive library of downloadable locale information (see [13], for
further details).

Most development software has localisation routines available that access locale information (see [14], [15],
[16] for more information).

4.3.10 Principle 10: Include Documentation as Part of Localisation Efforts

User documentation should be available in the language of the locale, as this should be thought of as part of
the user interface.

4.3.11 Principle 11: Use Unicode Where Possible

Fundamentally, computers just deal with numbers. They store letters and other characters by assigning a
number for each one. Before Unicode was invented, there were hundreds of different encoding systems for

4 http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

5 http://docs.oracle.com/javase/7/docs/api/java/text/Collator.html

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/text/Collator.html

Version 1.1 D4.2 – Interoperability and Multilinguality Report

Page 22 of 49 © Storm Clouds 2014

assigning these numbers. No single encoding could contain enough characters: for example, the European
Union alone requires several different encodings to cover all its languages. Even for a single language like
English no single encoding was adequate for all the letters, punctuation, and technical symbols in common use.
[17]

These encoding systems also conflict with one another. That is, two encodings can use the same number for two
different characters, or use different numbers for the same character. Any given computer (especially servers)
needs to support many different encodings; yet whenever data is passed between different encodings or
platforms, that data always runs the risk of corruption. [17]

Unicode and ISO 10646 (also known as UCS for Universal Character Set) were developed as an
international standard to allow consistent representation and treatment of all characters. Each character has a
defined number or ‘code point’.

Unicode provides a unique number for every character, no matter what the platform, no matter what the
program, no matter what the language.

Incorporating Unicode into client-server or multi-tiered applications and websites offers significant cost savings
over the use of legacy character sets. Unicode enables a single software product or a single website to be
targeted across multiple platforms, languages and countries without re-engineering. It allows data to be
transported through many different systems without corruption. [17]

The most common encoding systems include UTF-8, UTF-16, and UTF-32. To help decide which encoding system
to use A brief comparison of Unicode encodings in terms of memory, storage and the need for backward
compatibility is available in [18]

Encoding Description

UTF-8 Every code point from 0-127 is stored as 1 byte. Code points with a value of 128 and
above are stored using up to 6 bytes. This means that for the first 128 characters the ASCII
character set maps to the UTF-8. The first byte in a multibyte character indicates how many
bytes are used for the character. This is the default used for XML.

UTF-16 It is the standard used for windows. It uses two bytes per character as standard. Most
UNICODE characters are encoded by their codepoints.UTF-16 is popular in areas using DCBS
(double character byte size) such as China, Japan. UTF-16 is used by Java and Windows.

UTF-32 Uses four bytes per character.

Table 4-2: Unicode Common Encoding Systems

Addressing the need for backward compatibility, Unicode also allows the use of older encoding systems. If a
code does not exist a default missing value is displayed.

To use Unicode in our applications we should use compatible code sets and communicate this code set, as well
as use compatible data types and functions. For example:

 In emails the encoding system should be given in the header Content-Type: text/plain; charset="UTF-8"

 With HTML pages the encoding should always be given in the Meta tag in the head <head><meta

http-equiv="Content-Type" content="text/html; charset=UTF-8" />

Data should be saved or converted as appropriate in a Unicode format. Care should be taken when data
stored in non Unicode data types is converted to Unicode data types as this could cause issues with missing
data, this should be flagged as an error when it is detected.

4.3.12 Principle 12: Consider What Fonts to Use and How to Use Them

There are a limited set of Unicode fonts which aim to represent most if not all of the Unicode character set,
however it is recommended to use the most appropriate fonts for the locale and language in preference to
UNICODE fonts, while avoiding script or calligraphic type fonts. In any case a fallback font should be defined.

4.4 Multilingualism Checklist

The following multilingualism checklist will assure the accuracy of translation in context, and ensure that the
applications behave as expected [8]:

Program specifications account for international considerations from the outset

D4.2 – Interoperability and Multilinguality Report Version 1.1

© Storm Clouds 2014 Page 23 of 49

 Icons and bitmaps are generic, are culturally acceptable, and do not contain text.

 Menu and dialog-box designs leave room for text expansion.

 UI elements maintained in an accessible and trackable format, such as a resource file format, or a
database table

 All UI elements (buttons, window size, labels) are identified and adapted

 Text and messages are devoid of slang and specific cultural references.

 Humour, puns, slang and special, mythological, and religious symbols in icons as well as hand
gestures or body positions are avoided.

 Strings or characters that should not be localized are marked.

 All string handling done with Unicode.

 Shortcut-key combinations are accessible on international keyboards.

 Consistent English user interface terminology is used in strings.

 Service/software “Multilingual By Design”

 Relative sizing for elements such as label boxes, containers etc. instead of fixed sizing.

 Code avoids use of embedded text in icons and graphics (Necessary to allow translation of icons
and graphics).

 Use external style sheets to define styles.

 National flags in icons avoided.

Table 4-3: Multilingualism Checklist-1

Code is generic enough to work for several languages

 Code doesn't concatenate strings to form sentences.

 Code doesn't use a given string variable in more than one context.

 Code doesn't contain hard-coded character constants, numeric constants, screen positions, filenames,
or pathnames that presume a particular language.

 Buffers are large enough to handle translated words and phrases.

 Program allows input of international data.

 All language editions can read one another's documents.

 Code contains support for locale-specific hardware, if necessary.

 Introduction of new languages possible without reengineering.

 Messages and strings stored as complete sentences rather than reconstructed from keywords.

 Usage of ordinals with numbers avoided.

 Code use string variables instead of string constants.

 Translatable text is separated from the code and placed in resource files, like a ResW or ResJSON
file.

Table 4-4: Multilingualism Checklist-2

All international editions of the program are compiled from one set of source files

 Mechanisms requiring code to be recompiled for different language editions are removed.

 Localizable items are stored in resource files.

 All language editions using double-byte character sets are based on a single executable.

 All language editions using Unicode are based on a single executable.

 All bidirectional language editions are based on a single executable.

 Web-application runs successfully on all modern browsers.

 All language editions share a common file format.

 Service provided with one set of binaries.

Version 1.1 D4.2 – Interoperability and Multilinguality Report

Page 24 of 49 © Storm Clouds 2014

Table 4-5: Multilingualism Checklist-3

Code is generic enough to handle different character sets

 Code properly handles accented characters.

 Program handles non homogeneous network environments in which machines are running different
code pages.

 Code supports Unicode or conversion between Unicode and the local code page.

 Data saved or converted as appropriate in a Unicode format.

 Code doesn't assume that all characters are 8-bit or 16-bit.

 Code uses generic data types and generic function prototypes.

 Program displays and prints text using the appropriate fonts.

Table 4-6: Multilingualism Checklist-4

Program meets international testing standards

 Text is translated and meets the standards of native speakers.

 Dialog boxes are resized and text is hyphenated appropriately.

 Translated dialog boxes, status bars, toolbars, and menus fit on the screen at different resolutions.

 Menu and dialog-box accelerators are unique.

 User can type accented characters into documents, dialog boxes, and filenames.

 User can successfully cut, paste, save, and print accented characters.

Table 4-7: Multilingualism Checklist-5

Regional Specification

 Date and time is properly formatted for target region.

 Phone number formats are properly formatted for target region.

 Addresses properly formatted for target region (ordering of address fields, availability and
format of postcodes, Country names)

 Colours are appropriate for the target market and express the desired message.

 Service allows entering of an address in the desired language.

 Licenses and product names obey country-specific regulations.

 Provided phone numbers are accessible by the users in the target market.

 Currency conversions and formats are handled properly.

 Currency amount stored along with currency identifiers.

 Measurements stored along with their measuring units.

 User documentation available in the language of the locale.

 Service expresses the name of the language and country in English or in any other language
selectable on the platform, in text form rather than using icons and flags.

 Client-side locale used to represent the data (instead of the server-side locale).

Table 4-8: Multilingualism Checklist-6

Language

 Terminology is consistent across the UI, help files and documentation.

 Text is free of grammatical mistakes.

 Text is properly translated.

D4.2 – Interoperability and Multilinguality Report Version 1.1

© Storm Clouds 2014 Page 25 of 49

 Text is free of character corruption.

 Default language specified so that, at a minimum, some message is displayed in the event of
missing text or images.

Table 4-9: Multilingualism Checklist-7

Appearance/Layout

 Localized images are good quality.

 Layout is consistent with the source/English version.

 Line breaks and hyphenation are correct.

 Script or calligraphic type fonts avoided.

Table 4-10: Multilingualism Checklist-8

Functionality

 Basic functionality tests were performed on the localized application (provide test cases).

 Hyperlinks function properly.

 Hot keys are functional.

 Entry fields support special characters.

 Validation of fields works properly (e.g postal codes for target region).

 Lists are sorted according to target language and region.

 Service offers search and sort order according to the current user preferences.

 Service log missing translations as system errors.

 Service support browser detection (browser sniffing) to obtain the locale in which data formatting is
performed.

 Service support browser detection (browser sniffing) to obtain the default language in which
content is represented.

 Service saves the preferred locale and uses the same preference in the future, for registered users.

 Service remembers the selected locale and continue using it during the session.

 Service allows users to change locales anytime without having to restart the service in order to
accept locales change.

 Service allows users to select their own input method, such as the keyboard layout.

 Different keyboard layouts facilitated.

 User is notified in the event of a missing element in their requested language.

 Application runs successfully on all modern browsers.

Table 4-11: Multilingualism Checklist-9

Version 1.1 D4.2 – Interoperability and Multilinguality Report

Page 26 of 49 © Storm Clouds 2014

4.5 STORM CLOUDS Use Cases

4.5.1 Municipio de Agueda – Multilingualism Checklist

Program specifications account for international considerations
from the outset

Pass Fail N/A Notes

 Icons and bitmaps are generic, are culturally acceptable, and
do not contain text.

 It is possible to substitute
icons for each language

 Menu and dialog-box designs leave room for text expansion. 

 UI elements maintained in an accessible and trackable format,
such as a resource file format, or a database table



 All UI elements (buttons, window size, labels) are identified and
adapted



 Text and messages are devoid of slang and specific cultural
references.



 Humour, puns, slang and special, mythological, and religious
symbols in icons as well as hand gestures or body positions are
avoided.



 Strings or characters that should not be localized are marked. 

 All string handling done with Unicode. 

 Shortcut-key combinations are accessible on international
keyboards.



 Consistent English user interface terminology is used in strings. 

 Service/software “Multilingual By Design” 

 Relative sizing for elements such as label boxes, containers etc.
instead of fixed sizing.



 Code avoids the use of embedded text in icons and graphics?
(Necessary to allow translation of icons and graphics)

 It is possible to substitute
icons for each language

 Use external style sheets to define styles. 

 National flags in icons avoided  Language is detected

Table 4-12: Agueda Program Specifications Checklist

Code is generic enough to work for several languages Pass Fail N/A Notes

 Code doesn't concatenate strings to form sentences. 

 Code doesn't use a given string variable in more than one
context.

 

 Code doesn't contain hard-coded character constants, numeric
constants, screen positions, filenames, or pathnames that
presume a particular language.



 Buffers are large enough to handle translated words and
phrases.



D4.2 – Interoperability and Multilinguality Report Version 1.1

© Storm Clouds 2014 Page 27 of 49

 Program allows input of international data. 

 All language editions can read one another's documents. 

 Code contains support for locale-specific hardware, if
necessary.

 

 Introduction of new languages possible without reengineering 

 Messages and strings stored as complete sentences rather than
reconstructed from keywords.

 

 Usage of ordinals with numbers avoided  

 Code use string variables instead of string constants 

 Translatable text is separated from the code and placed in
resource files, like a ResW or ResJSON file

 JSON file

Table 4-13: Agueda Generic Code Checklist

All international editions of the program are compiled from one
set of source files

Pass Fail N/A Notes

 Mechanisms requiring code to be recompiled for different
language editions are removed



 Localizable items are stored in resource files. 

 All language editions using double-byte character sets are
based on a single executable.

 

 All language editions using Unicode are based on a single
executable.



 All bidirectional language editions are based on a single
executable.

 

 All language editions share a common file format. 

 Service provided with one set of binaries 

Table 4-14: Agueda Source Files Checklist

Code is generic enough to handle different character sets Pass Fail N/A Notes

 Code properly handles accented characters. 

 Program handles no homogeneous network environments in
which machines are running different code pages.

   The browser should
handle conversion to
unicode

 Code supports Unicode or conversion between Unicode and the
local code page.

 The browser should
handle conversion to
unicode

 Data saved or converted as appropriate in a Unicode format 

Version 1.1 D4.2 – Interoperability and Multilinguality Report

Page 28 of 49 © Storm Clouds 2014

 Code doesn't assume that all characters are 8-bit or 16-bit. 

 Code uses generic data types and generic function prototypes. 

 Program displays and prints text using the appropriate fonts.  Not tested

Table 4-15: Agueda Character Set Checklist

Program meets international testing standards Pass Fail N/A Notes

 Text is translated and meets the standards of native speakers. 

 Dialog boxes are resized and text is hyphenated
appropriately.



 Translated dialog boxes, status bars, toolbars, and menus fit on
the screen at different resolutions.



 Menu and dialog-box accelerators are unique.  Not tested

 User can type accented characters into documents, dialog
boxes, and filenames.



 User can successfully cut, paste, save, and print accented
characters.



Table 4-16: Agueda International Testing Standards Checklist

Regional Specification Pass Fail N/A Notes

 Date and time is properly formatted for target region. 

 Phone number formats are properly formatted for target
region.

 

 Addresses properly formatted for target region (ordering of
address fields, availability and format of postcodes, Country
names)

 

 Service allows entering of an address in the desired language. 

 Colours are appropriate for the target market and express the
desired message.

 Not tested

 Licenses and product names obey country-specific regulations. 

 Provided phone numbers are accessible by the users in the
target market.

 

 Currency conversions and formats are handled properly. 

 Currency amount stored along with currency identifiers 

 Measurements stored along with their measuring units  

 User documentation available in the language of the locale 

D4.2 – Interoperability and Multilinguality Report Version 1.1

© Storm Clouds 2014 Page 29 of 49

 Service express the name of the language and country in
English or in any other language selectable on the platform, in
text form rather than using icons and flags

 

 Client-side locale used to represent the data (instead of the
server-side locale)



Table 4-17: Agueda Regional Specification Checklist

Language Pass Fail N/A Notes

 Terminology is consistent across the UI, help files and
documentation.



 Text is free of grammatical mistakes.  Not fully tested

 Text is properly translated.  Not translated by a
native speaker

 Text is free of character corruption. 

 Default language specified so that, at a minimum, some
message is displayed in the event of missing text or images



Table 4-18: Agueda Language Checklist

Appearance/Layout Pass Fail N/A Notes

 Localized images are good quality. 

 Layout is consistent with the source/English version. 

 Line breaks and hyphenation are correct. 

 Script or calligraphic type fonts avoided 

Table 4-19: Agueda Appearance/Layout Checklist

Functionality Pass Fail N/A Notes

 Basic functionality tests were performed on the localized
application (provide test cases).



 Hyperlinks function properly. 

 Hot keys are functional.  Not tested

 Entry fields support special characters. 

 Validation of fields works properly (e.g postal codes for target
region).

  Not tested

 Lists are sorted according to target language and region. 

 Service offers search and sort order according to the current
user preferences

 

 Service log missing translations as system errors  

 Service support browser detection (browser sniffing) to obtain
the locale in which data formatting is performed

 

Version 1.1 D4.2 – Interoperability and Multilinguality Report

Page 30 of 49 © Storm Clouds 2014

 Service support browser detection (browser sniffing) to obtain
the default language in which content is represented



 Service saves the preferred locale and use the same
preference in the future, for registered users

  

 Service remember the selected locale and continue using it
during the session



 Service allow users to change locales anytime without having to
restart the service in order to accept locales change

  The browser defined
locale is used

 Service allow users to select their own input method, such as the
keyboard layout



 Different keyboard layouts facilitated 

 User is notified in the event of a missing element in their
requested language

 

 Application runs successfully on all modern browsers. 

Table 4-20: Agueda Functionality Checklist

D4.2 – Interoperability and Multilinguality Report Version 1.1

© Storm Clouds 2014 Page 31 of 49

4.5.2 Ayuntamiento de Valladolid - Multilingualism Checklist

Program specifications account for international considerations
from the outset

Pass Fail N/A Notes

 Icons and bitmaps are generic, are culturally acceptable, and
do not contain text.



The only possible issue
is one icon that is one
hand which I am not
sure if it is a problem in
Arab countries.

 Menu and dialog-box designs leave room for text expansion. 

 UI elements maintained in an accessible and trackable format,
such as a resource file format, or a database table



 All UI elements (buttons, window size, labels) are identified and
adapted

 Not sure

 Text and messages are devoid of slang and specific cultural
references.



 Humour, puns, slang and special, mythological, and religious
symbols in icons as well as hand gestures or body positions are
avoided.

 

The only possible issue
is one icon that is one
hand which I am not
sure if it is a problem in
Arab countries.

 Strings or characters that should not be localized are marked. Not sure what that
means

 All string handling done with Unicode.

 Shortcut-key combinations are accessible on international
keyboards.



 Consistent English user interface terminology is used in strings.  The software is in
Spanish

 Service/software “Multilingual By Design”  The service does not
include multilingualism
but there is a module
designed for that in the
first beta.

 Relative sizing for elements such as label boxes, containers etc.
instead of fixed sizing.



 Code avoids the use of embedded text in icons and graphics?
(Necessary to allow translation of icons and graphics)

 

 Use external style sheets to define styles. 

 National flags in icons avoided 

Table 4-21: Valladolid Program Specifications Checklist

Version 1.1 D4.2 – Interoperability and Multilinguality Report

Page 32 of 49 © Storm Clouds 2014

Code is generic enough to work for several languages Pass Fail N/A Notes

 Code doesn't concatenate strings to form sentences.  Not sure. The record
that we show is built
taking information from
the database and
mixing it using a
template with a report
generator.

Sometimes we need to
build sentences "on the
fly", e.g. Error in entity
xxxx processing file
yyyy (xxx and YYY are
taken from the
database and the
sentences is built
automatically)

 Code doesn't use a given string variable in more than one
context.

 Not sure

 Code doesn't contain hard-coded character constants, numeric
constants, screen positions, filenames, or pathnames that
presume a particular language.

 

 Buffers are large enough to handle translated words and
phrases.

 

 Program allows input of international data. 

 All language editions can read one another's documents. 

 Code contains support for locale-specific hardware, if
necessary.

 

 Introduction of new languages possible without reengineering 

 Messages and strings stored as complete sentences rather than
reconstructed from keywords.

 

 Usage of ordinals with numbers avoided 

 Code use string variables instead of string constants Not sure

 Translatable text is separated from the code and placed in

resource files, like a ResW or ResJSON file

 We have several

modules developed by
different companies.
"Consola the
planeamiento" I think
the answer is no, but on
the "Visor" I think it is a
yes

Table 4-22: Valladolid Generic Code Checklist

D4.2 – Interoperability and Multilinguality Report Version 1.1

© Storm Clouds 2014 Page 33 of 49

All international editions of the program are compiled from one
set of source files

Pass Fail N/A Notes

 Mechanisms requiring code to be recompiled for different
language editions are removed

 

 Localizable items are stored in resource files. Not sure

 All language editions using double-byte character sets are
based on a single executable.

 Not sure

 All language editions using Unicode are based on a single
executable.

 Not sure

 All bidirectional language editions are based on a single
executable.

 Not sure

 All language editions share a common file format. 

 Service provided with one set of binaries 

Table 4-23: Valladolid Source Files Checklist

Code is generic enough to handle different character sets Pass Fail N/A Notes

 Code properly handles accented characters. 

 Program handles no homogeneous network environments in
which machines are running different code pages.

 Code supports Unicode or conversion between Unicode and the
local code page.

 

 Data saved or converted as appropriate in a Unicode format

 Code doesn't assume that all characters are 8-bit or 16-bit. 

 Code uses generic data types and generic function prototypes. 

 Program displays and prints text using the appropriate fonts. 

Table 4-24: Valladolid Character Set Checklist

Program meets international testing standards Pass Fail N/A Notes

 Text is translated and meets the standards of native speakers.  Text is not translated

 Dialog boxes are resized and text is hyphenated
appropriately.



 Translated dialog boxes, status bars, toolbars, and menus fit on
the screen at different resolutions.



 Menu and dialog-box accelerators are unique. 

 User can type accented characters into documents, dialog
boxes, and filenames.



 User can successfully cut, paste, save, and print accented
characters.



Version 1.1 D4.2 – Interoperability and Multilinguality Report

Page 34 of 49 © Storm Clouds 2014

Table 4-25: Valladolid International Testing Standards Checklist

Regional Specification Pass Fail N/A Notes

 Date and time is properly formatted for target region. 

 Phone number formats are properly formatted for target
region.



 Addresses properly formatted for target region (ordering of
address fields, availability and format of postcodes, Country
names)



 Service allows entering of an address in the desired language. 

 Colours are appropriate for the target market and express the
desired message.



 Licenses and product names obey country-specific regulations. Not sure

 Provided phone numbers are accessible by the users in the
target market.

  We don't have phone
numbers or currency

 Currency conversions and formats are handled properly. 

 Currency amount stored along with currency identifiers 

 Measurements stored along with their measuring units 

 User documentation available in the language of the locale 

 Service express the name of the language and country in
English or in any other language selectable on the platform, in
text form rather than using icons and flags

  The program is in
Spanish, no other
language is supported
right now. But every icon
has a configurable
tooltip.

 Client-side locale used to represent the data (instead of the
server-side locale)



Table 4-26: Valladolid Regional Specification Checklist

Language Pass Fail N/A Notes

 Terminology is consistent across the UI, help files and
documentation.



 Text is free of grammatical mistakes. 

 Text is properly translated. 

 Text is free of character corruption. 

 Default language specified so that, at a minimum, some
message is displayed in the event of missing text or images

 

Table 4-27: Valladolid Language Checklist

D4.2 – Interoperability and Multilinguality Report Version 1.1

© Storm Clouds 2014 Page 35 of 49

Appearance/Layout Pass Fail N/A Notes

 Localized images are good quality. 

 Layout is consistent with the source/English version. 

 Line breaks and hyphenation are correct. 

 Script or calligraphic type fonts avoided 

Table 4-28: Valladolid Appearance/Layout Checklist

Functionality Pass Fail N/A Notes

 Basic functionality tests were performed on the localized
application (provide test cases).



 Hyperlinks function properly. 

 Hot keys are functional. 

 Entry fields support special characters. 

 Validation of fields works properly (e.g postal codes for target
region).

 

 Lists are sorted according to target language and region. 

 Service offers search and sort order according to the current
user preferences



 Service log missing translations as system errors 

 Service support browser detection (browser sniffing) to obtain
the locale in which data formatting is performed



 Service support browser detection (browser sniffing) to obtain
the default language in which content is represented

 

 Service saves the preferred locale and use the same
preference in the future, for registered users

  There are not registered
users.

 Service remember the selected locale and continue using it
during the session

 

 Service allow users to change locales anytime without having to
restart the service in order to accept locales change

 

 Service allow users to select their own input method, such as the
keyboard layout

 

 Different keyboard layouts facilitated 

 User is notified in the event of a missing element in their
requested language

 

 Application runs successfully on all modern browsers.  Problems with the latest
version of Internet
Explorer

Table 4-29: Valladolid Functionality Checklist

Version 1.1 D4.2 – Interoperability and Multilinguality Report

Page 36 of 49 © Storm Clouds 2014

4.5.3 City of Thessaloniki - Multilingualism Checklist

Program specifications account for international considerations
from the outset

Pass Fail N/A Notes

 Icons and bitmaps are generic, are culturally acceptable, and
do not contain text.



 Menu and dialog-box designs leave room for text expansion. 

 UI elements maintained in an accessible and trackable format,
such as a resource file format, or a database table

 

 All UI elements (buttons, window size, labels) are identified and
adapted

 

 Text and messages are devoid of slang and specific cultural
references.

 

 Humour, puns, slang and special, mythological, and religious
symbols in icons as well as hand gestures or body positions are
avoided.

 

 Strings or characters that should not be localized are marked. 

 All string handling done with Unicode. 

 Shortcut-key combinations are accessible on international
keyboards.

 

 Consistent English user interface terminology is used in strings. 

 Service/software “Multilingual By Design” 

 Relative sizing for elements such as label boxes, containers etc.
instead of fixed sizing.



 Code avoids the use of embedded text in icons and graphics?
(Necessary to allow translation of icons and graphics)



 Use external style sheets to define styles. 

 National flags in icons avoided 

Table 4-30: Thessaloniki Program Specifications Checklist

Code is generic enough to work for several languages Pass Fail N/A Notes

 Code doesn't concatenate strings to form sentences. 

 Code doesn't use a given string variable in more than one
context.

 

 Code doesn't contain hard-coded character constants, numeric
constants, screen positions, filenames, or pathnames that
presume a particular language.



 Buffers are large enough to handle translated words and
phrases.



 Program allows input of international data. 

D4.2 – Interoperability and Multilinguality Report Version 1.1

© Storm Clouds 2014 Page 37 of 49

 All language editions can read one another's documents. 

 Code contains support for locale-specific hardware, if
necessary.

 

 Introduction of new languages possible without reengineering 

 Messages and strings stored as complete sentences rather than
reconstructed from keywords.

 

 Usage of ordinals with numbers avoided 

 Code use string variables instead of string constants 

 Translatable text is separated from the code and placed in
resource files, like a ResW or ResJSON file



Table 4-31: Thessaloniki Generic Code Checklist

All international editions of the program are compiled from one
set of source files

Pass Fail N/A Notes

 Mechanisms requiring code to be recompiled for different
language editions are removed

  php is not a compiled
language

 Localizable items are stored in resource files. 

 All language editions using double-byte character sets are
based on a single executable.

 

 All language editions using Unicode are based on a single
executable.

 

 All bidirectional language editions are based on a single
executable.

 All language editions share a common file format.

 Service provided with one set of binaries

Table 4-32: Thessaloniki Source Files Checklist

Code is generic enough to handle different character sets Pass Fail N/A Notes

 Code properly handles accented characters. 

 Program handles no homogeneous network environments in
which machines are running different code pages.

 

 Code supports Unicode or conversion between Unicode and the
local code page.



 Data saved or converted as appropriate in a Unicode format 

 Code doesn't assume that all characters are 8-bit or 16-bit. 

Version 1.1 D4.2 – Interoperability and Multilinguality Report

Page 38 of 49 © Storm Clouds 2014

 Code uses generic data types and generic function prototypes. 

 Program displays and prints text using the appropriate fonts. 

Table 4-33: Thessaloniki Character Set Checklist

Program meets international testing standards Pass Fail N/A Notes

 Text is translated and meets the standards of native speakers. 

 Dialog boxes are resized and text is hyphenated
appropriately.

 No hyphenation is used

 Translated dialog boxes, status bars, toolbars, and menus fit on
the screen at different resolutions.



 Menu and dialog-box accelerators are unique. 

 User can type accented characters into documents, dialog
boxes, and filenames.



 User can successfully cut, paste, save, and print accented
characters.



Table 4-34: Thessaloniki International Testing Standards Checklist

Regional Specification Pass Fail N/A Notes

 Date and time is properly formatted for target region. 

 Phone number formats are properly formatted for target
region.

 

 Addresses properly formatted for target region (ordering of
address fields, availability and format of postcodes, Country
names)

 

 Service allows entering of an address in the desired language. 

 Colours are appropriate for the target market and express the
desired message.



 Licenses and product names obey country-specific regulations. 

 Provided phone numbers are accessible by the users in the
target market.



 Currency conversions and formats are handled properly. 

 Currency amount stored along with currency identifiers 

 Measurements stored along with their measuring units 

 User documentation available in the language of the locale 

 Service express the name of the language and country in
English or in any other language selectable on the platform, in



D4.2 – Interoperability and Multilinguality Report Version 1.1

© Storm Clouds 2014 Page 39 of 49

text form rather than using icons and flags

 Client-side locale used to represent the data (instead of the
server-side locale)



Table 4-35: Thessaloniki Regional Specification Checklist

Language Pass Fail N/A Notes

 Terminology is consistent across the UI, help files and
documentation.



 Text is free of grammatical mistakes. 

 Text is properly translated. 

 Text is free of character corruption. 

 Default language specified so that, at a minimum, some
message is displayed in the event of missing text or images



Table 4-36: Thessaloniki Language Checklist

Appearance/Layout Pass Fail N/A Notes

 Localized images are good quality. 

 Layout is consistent with the source/English version. 

 Line breaks and hyphenation are correct. 

 Script or calligraphic type fonts avoided 

Table 4-37: Thessaloniki Appearance/Layout Checklist

Functionality Pass Fail N/A Notes

 Basic functionality tests were performed on the localized
application (provide test cases).



 Hyperlinks function properly. 

 Hot keys are functional. 

 Entry fields support special characters. 

 Validation of fields works properly (e.g postal codes for target
region).



 Lists are sorted according to target language and region. 

 Service offers search and sort order according to the current
user preferences



 Service log missing translations as system errors 

 Service support browser detection (browser sniffing) to obtain
the locale in which data formatting is performed



 Service support browser detection (browser sniffing) to obtain
the default language in which content is represented



Version 1.1 D4.2 – Interoperability and Multilinguality Report

Page 40 of 49 © Storm Clouds 2014

 Service saves the preferred locale and use the same
preference in the future, for registered users



 Service remember the selected locale and continue using it
during the session



 Service allow users to change locales anytime without having to
restart the service in order to accept locales change



 Service allow users to select their own input method, such as the
keyboard layout



 Different keyboard layouts facilitated 

 User is notified in the event of a missing element in their
requested language

 

 Application runs successfully on all modern browsers. 

Table 4-38: Thessaloniki Functionality Checklist

D4.2 – Interoperability and Multilinguality Report Version 1.1

© Storm Clouds 2014 Page 41 of 49

5 Conclusion
While developing bilingual applications requires a little more time than developing unilingual applications, it
is not complex if approached in a systematic way. Additionally, the added rigor in design and planning has a
number of secondary benefits, for example our system will be more thoroughly tested and easier to maintain.
Finally, the use of a solid development framework and tools can help developers build such applications
quickly and consistently.

The importance of providing software that can be used in more than one language or culture has increased,
due to the growth of the internet that has fuelled software sharing. To gain from future developments
software should be developed with an expectation that it will be used in more than one environment.

This document has outlined some of the main recommendations for developing software that can be adapted
to multilingual use.

Version 1.1 D4.2 – Interoperability and Multilinguality Report

Page 42 of 49 © Storm Clouds 2014

References

[1] STORM CLOUDS Consortium, “Surfing Towards the Opportunity of Real Migration to CLOUD-
based public Services”, November 2013

[2] “Using the RESTful API as an onramp to object storage”, article from
http://searchcloudstorage.techtarget.com

[3] “Is CDMI ready for prime time?”, by Terri McClure, Storage magazine - Vol. 11 Num. 7
September 2012

[4] “Cloud APIs at hand to connect to databases”, Arif Mohamed, ComputerWeekly.Com

[5] Wikipedia: “Internationalization and localization”

[6] “Principles and Guidelines on Building Multilingual Applications for Official Statistics”, UNECE,
Geneva, 2012

[7] IBM comprehensive guide to developing international software that provides an in-depth
review of issues involved in developing software for multi-culture use available at http://www-
01.ibm.com/software/globalization/guidelines/

[8] Microsoft Win32 Internationalization Checklist http://msdn.microsoft.com/en-
us/library/cc194756.aspx

[9] Globalization Step-by-Step: http://msdn.microsoft.com/en-us/goglobal/bb688121

[10] Microsoft Sorting and String Comparison: http://msdn.microsoft.com/en-
us/goglobal/bb688122

[11] Oracle guide: Linguistic Sorting and String Searching
http://download.oracle.com/docs/cd/B19306_01/server.102/b14225/ch5lingsort.htm#NLSP
G005

[12] javapractices.com “Compare and sort Strings”
http://www.javapractices.com/topic/TopicAction.do?Id=207

[13] CLDR: Unicode Common Locale Data Repository: The Unicode CLDR provides a standardized
repository of locale data in xml format. http://cldr.unicode.org/

[14] GNU C Library: The GNU C Library, commonly known as glibc, is the C standard library
released by the GNU Project; http://www.gnu.org/software/libc/ For example 7.6 Accessing
Locale Information: http://www.gnu.org/s/libc/manual/html_node/Locale-Information.html

[15] The Java platform :java.util.Locale
http://java.sun.com/developer/technicalArticles/J2SE/locale/

[16] ICU: “a mature, widely used set of C/C++ and Java libraries providing Unicode and
Globalization support for software applications” http://userguide.icu-project.org/i18n

[17] Unicode: The Unicode Consortium is a non-profit organization devoted to developing,
maintaining, and promoting software internationalization standards and data, particularly the
Unicode Standard, which specifies the representation of text in all modern software products
and standards; http://www.unicode.org

[18] Wikipedia article on “Comparison of Unicode encodings”:
http://en.wikipedia.org/wiki/Comparison_of_Unicode_encodings

[19] Internationalization Core Working Group Home Page: Provides internationalization advice to
other groups developing Web standards http://www.w3.org/International/core/

[20] Wikipedia article on ASCII: http://en.wikipedia.org/wiki/ASCII

[21] Wikipedia article on UNICODE: http://en.wikipedia.org/wiki/Unicode

[22] Open Cloud Computing Interface: http://occi-wg.org/

[23] “Develop a secure API design in a cloud environment”, Dejan Lukan, SearchCloudSecurity

[24] “Web Services Security Checklist”, Gunnar Peterson’s, SOA Web Services Security Consulting &
Training www.arctecgroup.net

http://www-01.ibm.com/software/globalization/guidelines/
http://www-01.ibm.com/software/globalization/guidelines/
http://msdn.microsoft.com/en-us/library/cc194756.aspx
http://msdn.microsoft.com/en-us/library/cc194756.aspx
http://msdn.microsoft.com/en-us/goglobal/bb688121
http://msdn.microsoft.com/en-us/goglobal/bb688122
http://msdn.microsoft.com/en-us/goglobal/bb688122
http://download.oracle.com/docs/cd/B19306_01/server.102/b14225/ch5lingsort.htm#NLSPG005
http://download.oracle.com/docs/cd/B19306_01/server.102/b14225/ch5lingsort.htm#NLSPG005
http://www.javapractices.com/topic/TopicAction.do?Id=207
http://cldr.unicode.org/
http://www.gnu.org/s/libc/manual/html_node/Locale-Information.html
http://java.sun.com/developer/technicalArticles/J2SE/locale/
http://userguide.icu-project.org/i18n
http://www.unicode.org/
http://en.wikipedia.org/wiki/Comparison_of_Unicode_encodings
http://www.w3.org/International/core/
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Unicode
http://occi-wg.org/
http://www.arctecgroup.net/

D4.2 – Interoperability and Multilinguality Report Version 1.1

© Storm Clouds 2014 Page 43 of 49

[25] “Cloud API Security Risks: How To Assess Cloud Service Provider APIs”, SearchCloudComputing

[26] “application program interface (API)”, Margaret Rouse, WhatsIs.com

[27] “API management”, Margaret Rouse, WhatsIs.com

[28] “5 Pillars of API management”, Layer 7 Technologies

[29] National Institute of Standards and Technology (NIST), Special Publication 800-145, The NIST
Definition of Cloud Computing, September 2011.

Version 1.1 D4.2 – Interoperability and Multilinguality Report

Page 44 of 49 © Storm Clouds 2014

D4.2 – Interoperability and Multilinguality Report Version 1.1

© Storm Clouds 2014 Page 45 of 49

Annex A ApplicationProgramming Interface

An application programming interface (API) is code that allows two software programs to communicate with
each other. The API defines the correct way for a developer to write a program that requests services from
an operating system or other application. APIs are implemented by function calls composed of verbs and
nouns. The required syntax is described in the documentation of the application being called.

Typically, APIs are released for third-party development as part of a software development kit (SDK) or as
an open API published on the Internet. If the applications are written in different languages or have been
written for different platforms, middleware can provide messaging services so the two applications can
communicate with each other.

Business interest in APIs grew with Web 2.0 mashups and executive dashboards that pulled data from two or
more sources. Cloud computing has fuelled even more interest, as companies experiment with ways to
integrate a cloud provider's service with on-premises systems or other cloud services. [26]

A.1 Secure APIs

When writing application programming interface for the cloud, it's important to address certain issues:

 Identity: Since servers don't automatically recognize first-time users, it requires proof of identity.
Typically this involves a user ID or a public key to uniquely identify a user. Unfortunately, the
provided information is public, so an attacker can also classify as a particular user, however they
won't be able to prove this conclusively.

 Authentication: To prove a user identity, the server automatically generates a challenge question in
the form of a password, a private key, a token or something else.

 Authorization: Once the user proves his or her identity, access is requested from the specified
application. The application then checks whether the user is allowed to access the requested resource
or perform a requested action before one is able to gain admittance.

There are a number of techniques an application can use to identify and authenticate users [23]:

 Username and password: A username and password pair provides user verification through a basic
or digest authentication. Through whichever method used, the password in an HTTP request is
unencrypted, so it is imperative to use a secure communication channel like HTTPS.

 Sessions: When the username and password are sent to an application, it responds with a cookie,
which will then be sent in all subsequent identification requests.

 Certificates: A public or private key infrastructure can be used to authenticate users. This requires
server and client certificates signed by a valid authority, which can be used to establish the legitimacy
of the certificate.

 Open Authorization: OAuth is mainly used when one application uses another application on behalf
of the user. For example, an application with a "Share to Twitter" button usually implements OAuth.
This grants the application access to Twitter's API without revealing the password of the application.

 Custom authentication schemes: A custom authentication scheme can be used to identify and
authenticate users through a proprietary protocol. A proprietary protocol is usually not a favourable
choice because it is only used in one application. Known protocols are typically better because they
minimize the time a user must spend learning it. A custom authentication scheme should only be used
by top-notch security teams because it's an involved process where things can often go wrong.

 API keys: API keys are used to prove the identity and authenticity of the user during the first request
sent to the server, when prior establishment of a session has not yet occurred. An API key is a simply a
long, unique token known only to the application running on the server-side and the client sending in
the API request. API keys can be better than usernames and passwords because of their increased
entropy, tougher protection against attackers and limited disclosure of sensitive information.

These fundamentals underpin the creation of a secure API design, especially when building a custom API or
even when using a cloud provider's API.

Version 1.1 D4.2 – Interoperability and Multilinguality Report

Page 46 of 49 © Storm Clouds 2014

A.2 Applications APIs

Since there is no foreseen interoperability issues as applications won’t communicate with each other neither
they will provide services to other systems, there are no specific application APIs to report.

A.3 Cloud APIs

Cloud APIs allow communication between applications or infrastructures in the cloud. Cloud APIs expose parts
of an application so data or services can be transmitted. The most common types are REST and SOAP.

The benefits of cloud APIs include the fact they offer clear boundaries, they’re non-ambiguous, are testable
and reliable. Having defined boundaries allows organisations to take functionality and data from a number
of third-party systems and, using the APIs provided, build new functionality and interfaces which add value to
existing systems. [4]

However, a cloud service provider (CSP) should have proper documentation and security testing results,
proving the legitimacy of its API design and security.

APIs serve to ease many common cloud computing processes and enable automation of more complex business
needs, such as configuring a variety of cloud instances among multiple providers and using a third-party
management platform for both cloud and on-premises systems.

A.3.1 Secure Cloud APIs

Cloud APIs require careful attention both from the CSP and the cloud user. Insecure cloud APIs can pose a
variety of risks related to confidentiality, integrity, availability and accountability.

It’s important for cloud customers to know how to “self-assess” the security of cloud APIs.

According to [24], which presents many of the same general categories of issues as the CSA report, the major
areas customers should be focused on are [25]:

 Transport security. All APIs irrespective of whether they are carrying sensitive personal data or not
should be protected with SSL 3.0 and TLS 1.2, since it’s easier to require SSL for the entire site

However, since every SSL or TLS service uses certificates this introduces potential problems since
certificates should be valid, not expired, not revoked, and matching all domains used by the site.
Moreover, there could be configuration issues with platform services, and software integration and
issues with end-to-end protection, if any proxying platforms are required as intermediaries.

 Authentication and authorization. CSPs offer dedicated APIs focusing on authentication and
authorization, meaning that cloud customers amongst others should check whether:

o APIs manage encryption of usernames and passwords;

o Management of two-factor authentication attributes is possible;

 Code and development practices. Any APIs that pass JSON and XML messages or accept input from
users and applications must be adequately tested for standard injection flaws and cross-site request
forgery (CSRF) attacks, schema validation, encoding for both input and output, and so on.

 Message protection. Apart from the general coding best practices, APIs should consider message
confidentiality, integrity validation, availability of information and encryption or encoding.

o Confidentiality. Assurance that information is shared only among authorised persons or
organisations

o Integrity. Assurance that the information is authentic and complete.

o Availability. Assurance that the systems responsible for delivering, storing and processing
information are accessible when needed, by those who need them.

A.3.2 RESTful API

A RESTful API is an application program interface (API) that uses HTTP requests to GET, PUT, POST and
DELETE data.

OpenStack Swift provides a RESTful API.

D4.2 – Interoperability and Multilinguality Report Version 1.1

© Storm Clouds 2014 Page 47 of 49

A.3.2.1 RESTful API Standards

Object storage is radically changing the storage landscape. Yet perhaps the first question to ask is how can
we effectively move data into and out of an object storage system? The answer to this is by using a RESTful
API. It's the native interface, has the lowest latencies and fastest response times and provides the most control.
[2]

A RESTful API is also known as a RESTful Web service. It's an intuitive, easy-to-use resource-oriented model
exposing service provider services. It's intuitive because it uses the same API humans use to navigate the Web.
It simply uses a "PUT" to change the state of or update a resource, which can be an object, file or block; a
"GET" to retrieve a resource; a "POST" to create that resource; and a "DELETE" to remove it. [2]

Currently, most cloud storage service providers use a proprietary object storage interface. These proprietary
interfaces are similar -- they’re all RESTful, with basic “put,” “get” and “delete” commands -- but they each
use different semantics. There are currently three de facto RESTful API standards to pick from: Amazon S3,
SNIA CDMI and OpenStack SWIFT.

Amazon Web Services and its Simple Storage Service (S3) have made the S3 RESTful API into a de facto
standard. What this means is that the vast majority of object storage providers provide an S3-compatible
RESTful API, meaning that they should work with most object storage providers. We say should because some
S3-compatible implementations are not complete, but rather a smaller subset.

The Cloud Data Management Interface (CDMI) created and managed by the Storage Networking Industry
Association (SNIA) standards body is defined as “the functional interface that applications will use to create,
retrieve, update, and delete data elements from the Cloud”. [3]Unfortunately only a limited number of cloud
providers currently provide an API compatible with and certified for CDMI.

Finally the latest and emerging de facto RESTful API standard is the open source object storage OpenStack
Swift RESTful API. Although OpenStack Swift has limited installations and production deployments, many of
the cloud providers have added the Swift RESTful API, in order to make their object storage systems plug-
and-play-compatible with OpenStack Nova that has a much greater market presence. Additionally, many of
the various OpenStack services (compute, storage, networking, and so on) are API-compatible with their
equivalent AWS capabilities, meaning that if we have an application that runs on AWS, we can run the
application in any OpenStack environment, including our on-premises data centre.

A.3.3 OpenStack RESTful API

The description of the OpenStack RESTFul API can be found at this link http://docs.openstack.org/ (the official
documentation site of the OpenStack community) under section "Get API reference information".

A.3.4 OpenStack Open Cloud Computing Interface

The Open Cloud Computing Interface (OCCI) comprises a set of open community-lead specifications delivered
through the Open Grid Forum. OCCI is a Protocol and API for all kinds of Management tasks. OCCI was
originally initiated to create a remote management API for IaaS model based Services, allowing for the
development of interoperable tools for common tasks including deployment, autonomic scaling and monitoring.
It has since evolved into a flexible API with a strong focus on integration, portability, interoperability and
innovation while still offering a high degree of extensibility.[22]

OpenStack OCCI implementation supports:

 Authentication (Keystone)

curl -d '{"auth": {" project": "admin", "passwordCredentials": {" username":"admin","
password":„..."},"tenantId":"d418851c6d294381bbe6e082849686d6"}}' -H"Content-type: application/json"
http://130.206.80.100:5000/v2.0/tokens

 Create Security Group

 Create Security Rule

 List Provider Capabilities

 Create Instance

curl -v -X POST 130.206.80.11:8787/compute/ -H 'Category: compute;
scheme="http://schemas.ogf.org/occi/infrastructure#";' -H 'Content-Type: text/occi' -H 'X-Auth-Token: '$KID -H

Version 1.1 D4.2 – Interoperability and Multilinguality Report

Page 48 of 49 © Storm Clouds 2014

'Category:m1.small; scheme="http://schemas.openstack.org/template/resource#"; class="mixin"' -H
'Category:Ubuntu_12.04_cloudimg_amd64_VNC;[...]

 Get Instance Details

 List Instances

curl -v -X GET 130.206.80.11:8787/compute/edaab8cd-20a3-4639-8ea2-fb89c89f5107 -H 'X-Auth-Token: '$KID

 Start Instance

 Stop Instance

 Create Volume

 Attach Volume

 Manage IP addresses

 …

A.3.5 API Management

API management is the process of publishing, promoting and overseeing APIs in a secure, scalable
environment. It also includes the creation of end user support resources that define and document the APIs.
[27]

According to [28] the 5 pillars of API management are:

1. Expose data & functionality in API-friendly formats. The first stage of API management is to present
the diverse information assets in a format that developers can understand and leverage. Solution is to
convert complex on-premise application services into developer-friendly RESTful APIs, involving an
API Gateway to automatically convert data from the SOAP-based services into RESTful APIs.

2. Protect information assets exposed via APIs to prevent misuse. APIs increase the attack surface of
applications. Conventional online security solutions designed for the Web do not cover all the
potential threats created by API publishing, so specific API security must be implemented to ensure
that we offer protection against message-level attack and hijack from hackers. Solution is to use an
API Gateway to inspect and filter all API traffic in order to identify and neutralize message level,
API-specific security threats such as SQL Injection, Denial of Service attacks and viruses.

3. Secure APIs against unauthorized access, by leveraging key identity and access management (IAM)
standards such as Oauth. OAuth is especially useful as it allows for flexible implementation of
appropriate levels of security and to federate identities from existing IAM systems, enterprise single
sign-on (SSO) and social accounts. Solution is to use an API Gateway that should seamlessly integrate
with leading IAM systems6. It should also include configurable templates for implementing access
control, SSO and social login in typical use cases, based on OAuth and other key standards.

4. Optimize the flow of API traffic and system performance, to ensure a satisfying and consistent user
experience, and manage the API Lifecycle. API lifecycle management is crucial to ensuring existing
applications do not break when APIs are updated. Solution is to use an API Gateway to control the
flow of API traffic and manage the API lifecycle, to ensure availability and performance. For
performance management, it should have functionality for easy-to-scale routing, service mediation,
message caching, call aggregation and traffic compression. For lifecycle management, it should have
features for dependency resolution and re-mapping in addition to automatic versioning, including roll-
back to any previous version.

5. Engage and manage developers7, since much of the true value of an API comes from them, who build
Web and mobile applications against these APIs. Enable and educate developers by providing
engaging and interactive tools needed to leverage the APIs, since this will result in more useful
applications. Solution is to use a branded, interactive online portal offering developers simple API
registration and access to interactive documentation, code examples, testing tools and discussion
forums. This should be integrated into the API Gateway.

6 CA SiteMinder, Oracle Access Manager, Microsoft Active Directory and IBM Tivoli

7 Developers may be internal employees, partners, contactors or independent “long-tail” devs

D4.2 – Interoperability and Multilinguality Report Version 1.1

© Storm Clouds 2014 Page 49 of 49

A.4 Cloud Storage Gateways

As already described cloud service providers publish object storage APIs to enable users to code applications
to manage data objects. But most IT applications use block and file storage formats, not object formats,
meaning that IT teams have to rewrite their application interfaces so they can use cloud services.

A solution is to use cloud storage gateways. A gateway system is a local virtual or physical appliance that
offers IT a standards-based interface (iSCSI, CIFS or NFS) and translates standards-based storage operations
into the object software or service provider’s API language. [3]

Most of these systems are multilingual, speaking the API languages of multiple cloud providers. That way, if
one vendor shuts down a service or a portion of one, IT can use gateway offerings to move data
transparently to another provider.

