

Project Acronym: STORM CLOUDS

Grant Agreement number: 621089

Project Title: STORM CLOUDS – Surfing Towards the Opportunity of Real Migration to CLOUD-based public
Services

Legal Notice and Disclaimer

This work was partially funded by the European Commission within the 7th Framework Program in the context of the CIP
project STORM CLOUDS (Grant Agreement No. 621089). The views and conclusions contained here are those of the
authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed
or implied, of the STORM CLOUDS project or the European Commission. The European Commission is not liable for any use
that may be made of the information contained therein.

The Members of the STORMS CLOUDS Consortium make no warranty of any kind with regard to this document, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Members of the
STORMS CLOUDS Consortium shall not be held liable for errors contained herein or direct, indirect, special, incidental or
consequential damages in connection with the furnishing, performance, or use of this material.

© STORMS CLOUDS Consortium 2015

Deliverable D2.4.2

Cloud Application Template Catalogue

Workpackage: WP2

Version: 1.0

Date: 29/07/2015

Status: Version

Dissemination Level: PUBLIC

Nature: REPORT

Editor: Marco Consonni (Hewlett Packard Italiana S.r.l.)

Authors: Marco Consonni (Hewlett Packard Italiana S.r.l)

Reviewed by: Alkiviadis Giannakoulias (European Dynamics)

Version 1.0 D2.4.2 – Cloud Application Template Catalogue

Page 2 of 12 © Storm Clouds 2015

Version Control
Modified by Date Version Comments

Marco Consonni 15/7/2015 Draft First draft

Marco Consonni

Alkiviadis Giannakoulias

29/7/2015 1.0 Ready for Review

D2.4.2 – Cloud Application Template Catalogue Version 1.0

© Storm Clouds 2015 Page 3 of 12

Executive Summary
Surfing Towards the Opportunity of Real Migration to Cloud-based public Services (STORM CLOUDS) is a
project partially funded by the European Commission within the 7th Framework Program in the context of the
Capital Improvement Plan (CIP) project (Grant Agreement No. 621089). The project has the objective of
exploring the shift to a cloud-based paradigm for deploying services that Public Authorities (PAs) currently
provide using more traditional Information Technology (IT) deployment models. In this context, the term "services"
refers to applications, usually made available through Internet, that citizens and/or public servants use for
accomplishing some valuable task. The project aims to define useful guidelines on how to implement the process
of moving application to cloud computing and is based on direct experimentation with pilot projects conducted
in, at least, the cities participating to the consortium [1].

Work Package 2 (WP2) of the Storm Clouds project is aimed at designing and implementing a reference
architecture for the Storm Clouds Platform (SCP), the cloud platform infrastructure for hosting application
services selected for being ported to cloud. In the WP scope there is also the preparation of a library of tools
(prefab VM Images, cloud-application templates and other artefacts) that, taking advantage of the automation
functions implemented in IaaS, can be used for facilitating the deployment of cloud-based applications [1].

This document is the second issue of the iterative deliverable “Cloud-Application Template Catalogue” that
describes the current status of the tool library.

The first issue of the document [2] describes a list of prefabricated Virtual Machine (VM) images: some of them
simply provide the operating system, others implement basic functions like, for example, a database engine
(e.g. MySQL or PostgreSQL). They were obtained by manually installing the software packages and used as
the “starting point” for deploying the application services. This approach, albeit correct, has some drawbacks
in particular in a cloud environment where services need to be activated and de-activated in very short time. In
fact, the steps for deploying the software must be well documented and without automation the cloud user is
required to perform them manually. In addition to being tedious, the process is also error-prone because it is
usually hard to document all the single steps required for installing the software.

As mentioned in [3], automation can significantly improve the situation and SCP implements some automation
functions - like OpenStack Heat - that permits the cloud user to describe all the IaaS objects she needs for an
application in a script called stack. Using Heat stacks it is possible to "control the entire lifecycle of infrastructure
and applications within OpenStack clouds" [4]. In this perspective, recent activities of WP2 were focussed on the
implementation scripts (e.g. heat scripts) for automating the deployment of Virtual Machines and/or other cloud
computing objects (e.g. virtual volumes, virtual routers, etc.).

This document reports the current state of art of the tool library mostly describing the implemented scripts.

Version 1.0 D2.4.2 – Cloud Application Template Catalogue

Page 4 of 12 © Storm Clouds 2015

Table of Contents
Version Control ... 2
Executive Summary .. 3
Table of Contents ... 4
Abbreviations .. 5
1 Tools Description .. 6

1.1 Tenant Preparation Tools ... 7
1.2 Deployment Tools .. 8

2 Summary and Conclusions .. 11
References ... 12

D2.4.2 – Cloud Application Template Catalogue Version 1.0

© Storm Clouds 2015 Page 5 of 12

Abbreviations
Acronym Description

CLI Command Line Interface

CIP Capital Improvement Plan

CIP-PSP See CIP and PSP

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DOW Description of Work

FP7 Framework Program 7

IaaS Infrastructure as a Service

IT Information Technology

N/A Not Available or Not Applicable

PA Public Authority

PDF Portable Document Format

PSP Policy Support Program

SCP STORM Cloud Platform

SME Small and Medium Enterprise

TBD To Be Defined

TBW To Be Written

URL Uniform Resource Locator

WP Work Package

YAML YAML Ain't Markup Language

Version 1.0 D2.4.2 – Cloud Application Template Catalogue

Page 6 of 12 © Storm Clouds 2015

1 Tools Description
This chapter describes the implemented tools.

They are classified into the following categories:

 Tenant Preparation Tools: tools for configuring an OpenStack tenant;

 Deployment Tools: tools for deploying stacks of IaaS objects (VMs, Virtual Volumes, Virtual Networks,
etc.).

For each tool the following information is provided:

 Name: the name of the tool;

 Languages: the programming language(s) used for implementing the tool;

 Description: a brief description of the tool;

 Input: input parameters;

 Output: output values.

The tools are implemented as software scripts written in one or more of the following scripting languages:

 YAML (Heat): used for creating IaaS objects using OpenStack Heat;

 Bash Shell: used both for configuring SCP@HP and for configuring the VMs created through YAML
(heat) scripts.

It is worth noticing that while YAML (Heat) scripts can be used for creating most of the IaaS objects [5], when it
comes to configure VM objects (e.g. installing software packages), the cloud user needs to use different
languages like, for example bash scripts, puppet scripts [6], etc. In this perspective, YAML (heat) scripts creating
VMs ‘host foreign language scripts’ that take care of configuring the created VMs.

D2.4.2 – Cloud Application Template Catalogue Version 1.0

© Storm Clouds 2015 Page 7 of 12

1.1 Tenant Preparation Tools

During the project, the consortium decided to host the migrated applications on a public cloud operator; Enter
S.r.l. (http://www.enterpoint.it) was selected because it provides Infrastructure as a Service (IaaS) functions
using technology compliant to the SCP architecture. In addition HP has implemented an in-house SCP instance at
its own premises with the main purpose of providing all the partners with a testing and staging environment [7].
The production environment hosted by Enter was named SCP@Enter while the testing environment hosted by HP
is SCP@HP.

Because of the full compatibility of the technology used for the implementation, the coexistence of two
environments has not raised major issues and the migration of an application from SCP@HP to SCP@Enter (or
vice-versa) has resulted in a simple file transfer from one platform to the other. More in detail, once a VM is
prepared on the testing environment it can be moved to the production environment by making a snapshot of
the VM and exporting the related file from the testing environment to the production environment. This process
has just presented some minor issues mainly related to differences in the configuration of the two platforms. For
example, the flavors1 used for launching VMs on SCP@HP differs from the flavors used on SCP@Enter and it
was required to “map” the flavors implemented on SCP@HP to a similar flavors defined for SCP@Enter.

The implementation of automatic tools for the deployment of cloud applications requires that even these minor
issues are fixed in order to streamline the operations. For this purpose we have implemented some tools for
preparing the testing environment and creating operating conditions as closer as possible to the ones we have
on the production environment: the Tenant Preparation Tools are the tools implemented for that purpose.

In OpenStack, a tenant (or project) is an isolated resource container that form the principal organizational
structure within the cloud and, as a common practice, public cloud operators based on OpenStack activate a
tenant for each cloud service contract subscription. Having said that, Tenant Preparation Tools create, on the
testing environment, a tenant similar to the tenant we have on the production environment.

The following tables provide details on the tools.

Name CreateTenant.sh

Languages Bash shell script

Description It creates on SCP@HP a tenant (storm-enter) similar to the one available on SCP@Enter
specifying the same resource quotas and flavors. In order to run successfully, it requires the
installation of OpenStack CLI tools and the credentials of an OpenStack user with admin
role

Input None

Output None

Name GetPublicCloudImages.sh

Languages Bash shell script

Description It downloads from Internet the cloud images of the operating systems used for the
applications and/or the SCP components, and uploads them to the SCP@HP image
repository.
It currently downloads the following images:

- lucid-server-cloudimg-amd64-disk1.img
- trusty-server-cloudimg-amd64-disk1.img

In order to run successfully, it requires the installation of OpenStack CLI tools and the
credentials of an OpenStack user with admin role

Input None

Output None

Name DeleteTenant.sh

Languages Bash shell script

Description It deletes the tenant created by CreateTenant.sh (storm-enter).
In order to run successfully, it requires the installation of OpenStack CLI tools and the
credentials of an OpenStack user with admin role.

Input None

Output None

1 OpenStack flavors are virtual hardware templates defining sizes for RAM, disk, number of cores, and so on.

http://www.enterpoint.it/

Version 1.0 D2.4.2 – Cloud Application Template Catalogue

Page 8 of 12 © Storm Clouds 2015

1.2 Deployment Tools

This section describes the tools implemented for automating the creation of cloud IaaS objects specifically
designed for supporting applications running in the cloud. In contrast with the tools described in the previous
section, designed for running on SCP@HP, the ones listed here can be run both on SCP@HP and SCP@Enter.

Name Network.yaml

Languages Yaml (heat script)

Description It creates the network objects required for hosting the STORM cloud applications.
The following picture shows the network objects created by the script:

The scripts creates a private network (named SCP_Network) represented by the orange
thick line; this is the network where all the VMs created in the tenant will be connected to.
SCP_Network is connected through a router, represented by the small black square, to the
external provider network, represented by the blue thick line.
The provider network is not created by the script and, being the representation of the
network for accessing Internet, must be made available by the cloud operator.
SCP_Network supports addresses belonging to subnet 10.0.0.0/24 (IP address range
reserved for private network [8] and provides a DHCP service. On the other hand, an IP
address subrange (by default addresses from 10.0.0.1 to 10.0.0.127) are reserved for
static allocation. The reason for reserving a range of IP address for static allocation is that
some SCP services are themselves implemented as VMs (for example the DB layer) and
assigning them a static IP address prevents the realization of a local DNS service.
Actually the scripts requires that the DNS IP address is passed as a parameter; the actual
value could be either an IP address provided by the cloud operator or an IP address of a
DNS service publicly available on Internet (e.g. 8.8.8.8 or 8.8.8.4).

In order to run successfully, the script requires the installation of OpenStack CLI tools, the
credentials of an OpenStack user with member role for the tenant where the network objects
are created.

Input External_Network: the name of the provider network
External_DNS_IP: the IP address of the DNS service

Output None

D2.4.2 – Cloud Application Template Catalogue Version 1.0

© Storm Clouds 2015 Page 9 of 12

Name HeatImageBuilder.yaml

Languages YAML (heat script) and bash shell script

Description This script creates a VM used for preparing virtual machine images that can fully inter-
operate with OpenStack heat.
As mentioned above, Heat automates the creation and orchestration of IaaS cloud resources
but does not provide a language for configuring VMs. This task requires more sophisticated
and specific tools that range from shell scripts (e.g. bash shell scripts) to scripts for
configuration management solutions like Puppet [6], Ansible [9], etc.
As described by [10], full interoperability between VMs running in the cloud, Heat and other
configuration management tools can be obtained only if the VMs are equipped with ‘heat
hooks’, small pieces of code that take care of interoperating with Heat when the VM is
running. Although shell scripts for configuring VMs can work without heat hooks, in order to
use some advanced Heat constructs (e.g. SoftwareConfig), hook installation is mandatory.
For this reason, this tool ‘prepares’ VM images with the hooks installed starting from the VM
images with a plain operating system installation that are publicly available.
For example, starting from the Ubuntu 14.04.2 LTS (Trusty Tahr) available at [11], the VM
creates a VM image named as trusty-server-cloudimg-amd64-heat-hooks that can fully
interoperate with Heat.
The VM image creation is obtained using diskimage-builder [12], a set of tools implementing
the “core functionality for building disk images, file system images and ramdisk images for use
with OpenStack”.
The obtained images, should be used for implementing applications running on OpenStack
instead of their “plain” counterparts freely available on Internet because they allow a higher
level of interoperability with OpenStack Heat. It’s worth mentioning that those images are
used for implementing SCP components like the DB Layer and the Monitoring Layer.
The tool is composed of the following scripts:

- HeatImageBuilder.yaml: a YAML (Heat) script creating a plain Ubuntu VM Instance
- HeatImageBuilder.sh: a bash script installing diskimage-builder software package

and running it for creating VM images with Heat hooks.
The tool requires:

- a plain Ubuntu 14.04.2 LTS (Trusty Tahr) image on the hosting OpenStack cloud
- the credentials of an OpenStack user with member role for the tenant where the

cloud objects are created
By default the tool populates the image repository of the hosting cloud with a VM image
called trusty-server-cloudimg-amd64-heat-hooks, implementing an Ubuntu 14.04.2 LTS
(Trusty Tahr) installation with Heat hooks. The VM created by the YAML script can be used
for creating other fully-interoperable VM images (see [12]) for several operating systems
[13] and [14].

Input Key: the name of a keypair used for launching the VM
Flavor: the flavor used for launching the VM
Private_Network: the name of the private network to connect the VM to. By default it is set
to SCP_Network, created by Network.yaml
__ OS_USERNAME__: OpenStack account username
__ OS_PASSWORD__: OpenStack account password
__ OS_TENANT_NAME__: OpenStack tenant
__OS_AUTH_URL__: OpenStack authentication URL

Notes:

- the parameters prefixed and post-fixed with “__” are passed as parameters to the
bash script

- the __OS* parameters are used to upload the created VM image on the cloud image
repository

Output None

Version 1.0 D2.4.2 – Cloud Application Template Catalogue

Page 10 of 12 © Storm Clouds 2015

Name MySQLSingleNode.yaml

Languages YAML (heat script) and bash shell script

Description This tool creates an Ubuntu 14.04.2 LTS (Trusty Tahr) VM with an installation of MySQL
database engine.
It can be used as a starting point for the implementation of YAML (Heat) scripts for deploying
single node applications requiring a MySQL database.
The script creates a VM and a block storage volume used for storing the data.
The scripts also installs Duplicity [15], the backup solution identified in the SCP architecture.

Input Key: the name of a keypair used for launching the VM
Flavor: the flavor used for launching the VM
Private_Network: the name of the private network to connect the VM to. By default it is set
to SCP_Network, created by Network.yaml
Volume_Size: the size, in Gigabytes, of the volume for storing the database

Output DB_Root_Password: the password, automatically generated by the script, for the DB
administrator

Name PostgreSQLSingleNode.yaml

Languages YAML (heat script) and bash shell script

Description This tool creates a Ubuntu 14.04.2 LTS (Trusty Tahr) VM with an installation of PostgreSQL
database engine.
It can be used as a starting point for the implementation of YAML (Heat) scripts for deploying
single node applications requiring a PostgreSQL database.
The script creates a VM and a volume which is used for storing the data.
The scripts also installs Duplicity [15], the backup solution identified in the SCP architecture.

Input Key: the name of a keypair used for launching the VM
Flavor: the flavor used for launching the VM
Private_Network: the name of the private network to connect the VM to. By default it is set
to SCP_Network, created by Network.yaml
Volume_Size: the size, in Gigabytes, of the volume for storing the database

Output DB_Root_Password: the password, automatically generated by the script, for the DB
administrator

D2.4.2 – Cloud Application Template Catalogue Version 1.0

© Storm Clouds 2015 Page 11 of 12

2 Summary and Conclusions
This document has described the current state of art of the Cloud Application Template Catalogue that provides
tools for facilitating the deployment of STORM CLOUDS applications.

The latest activities of WP2 have been focussed on implementing tools for automating the deployment of
applications: the next steps will continue on this direction both for implementing SCP components (e.g. DB Layer)
and for revisiting and improving the method currently used for deploying the STORM CLOUDS applications.

Version 1.0 D2.4.2 – Cloud Application Template Catalogue

Page 12 of 12 © Storm Clouds 2015

References

[1] "Surfing Towards the Opportunity of Real Migration to CLOUD-based public Services," STORM CLOUDS
Consortium, November 2013.

[2] "D2.4.1 - Cloud Application Template Catalogue," STORM CLOUDS Consortium, 2014.

[3] "D2.2.2 - Storm Clouds Platform Architectural Design," STORM CLOUDS Consortium, 2015.

[4] "OpenStack Heat - Wiki Page," [Online]. Available: https://wiki.openstack.org/wiki/Heat. [Accessed Jan
2015].

[5] "OpenStack Heat - OpenStack Resource Types," [Online]. Available:
http://docs.openstack.org/developer/heat/template_guide/openstack.html. [Accessed June 2015].

[6] "Puppet Open Source," [Online]. Available: http://puppetlabs.com/puppet/puppet-open-source.
[Accessed Jan 2015].

[7] "D2.3.2 Storm Clouds Platform Implementation Status Report," STORM CLOUDS Consortium, 2014.

[8] "RFC1918 - Address Allocation for Private Internets," The Internet Engineering Task Force (IETF®), Feb
1996. [Online]. Available: https://www.ietf.org/rfc/rfc1918.txt. [Accessed June 2015].

[9] "Ansible Main Page," [Online]. Available: http://www.ansible.com/home. [Accessed July 2015].

[10] S. Hardy, "Heat SoftwareConfig resources - primer/overview," [Online]. Available:
http://hardysteven.blogspot.it/2015/05/heat-softwareconfig-resources.html. [Accessed July 2015].

[11] "Ubuntu 14.04.2 LTS (Trusty Tahr)," [Online]. Available: http://releases.ubuntu.com/14.04/. [Accessed
June 2015].

[12] "Openstack diskimage-builder - GitHub Page," [Online]. Available:
https://github.com/openstack/diskimage-builder. [Accessed June 2015].

[13] "Openstack diskimage-builder - Documentation," [Online]. Available:
http://docs.openstack.org/developer/diskimage-builder/. [Accessed July 2015].

[14] "OpenStack diskimage-builder - Supported Distributions," [Online]. Available:
http://docs.openstack.org/developer/diskimage-builder/user_guide/supported_distros.html.

[15] "Duplicity Main Page," [Online]. Available: http://duplicity.nongnu.org/. [Accessed Jan 2015].

